Q:
# What Are the Three Types of Symmetry?

**The three main types of symmetry used in mathematics are reflectional symmetry, rotational symmetry and point symmetry.** Other less common types of symmetry include translational symmetry, glide symmetry, helical symmetry and symmetry of scale.

Credit:
Martin Puddy
Stone
Getty Images

Reflectional symmetry, sometimes called mirror or line symmetry, occurs when an image can be flipped around an axis and still appear the same. For example, the letter "V" can be flipped 180 degrees around a central vertical axis and still look identical, while the letter "B" cannot. A rotationally symmetrical object remains the same after being rotated around a central point. A circle has rotational symmetry if rotated any number of degrees, whereas a square has rotational symmetry only if rotated some multiple of 90 degrees in any direction. Point symmetry occurs when every point of an image has a matching point that is the same distance from the central point but in the opposite direction. For example, every point that is at the top right has a corresponding point at the bottom left.

Learn more about Geometry-
Q:
## How Does Math Relate to Art?

A: Mathematics plays a key role in determining proportion, symmetry, shape and patterns, and is therefore an integral part of visual art. Mathematics can be u... Full Answer >Filed Under: -
Q:
## What Is a Line of Symmetry?

A: In geometry, a line of symmetry is a line that divides a shape into two halves that match exactly, as if reflected in a mirror. Line symmetry is sometimes ... Full Answer >Filed Under: -
Q:
## What Is Rotational Symmetry?

A: If a shape or image can be rotated less than 360 degrees and still retain the same appearance, this shape has rotational symmetry. For example, a five-poin... Full Answer >Filed Under: -
Q:
## How Many Lines of Symmetry Are in a Square?

A: A square has four lines of symmetry. One line crosses through each diagonal. The other two lines cross horizontally and vertically through the middle of th... Full Answer >Filed Under: