How Does One Consider the Differential Equation?


Quick Answer

A person can consider a differential equation by determining an initial condition, as a differential equation is an equation that gives the derivative of an unknown function in terms of the function and the independent variable. A differential equation is considered differently depending on whether it is ordinary or partial and linear or non-linear.

Continue Reading

Full Answer

For example, if y is the unknown function and t the independent variable, then an example of a differential equation would be dy/dt=f(y, t). Such a problem can be solved by finding the initial condition, such as y(0)=y0.

Often, differential equations enter applications as evolution equations. Thus, the independent variable is time, and the equation describes how some physical quantity evolves in time. If the right-hand side of the differential equation does not depend on y, then the differential equation can be solved using basic integration techniques. For example, if dy/dt=f(t), then y equals the integral of f(t), and the initial condition just specifies the constant of integration.

A delay differential equation uses a single variable for time. A stochastic differential equation is commonly used in physics and finance when the stochastic process is known. A differential algebraic equation is used to evaluate vectors. Different types of differential equations include linear equations, Bernoulli differential equations, second order differential equations and Laplace transforms.

Learn more about Calculus

Related Questions