Q:
# What is the meaning of "adjusted R squared"?

The adjusted r-square is a standardized indicator of r-square, adjusting for the number of predictor variables. This shows the standardized variance of the independent variables on the dependent variable in regression analysis. The adjusted r-square includes the degrees of freedom for the statistical model, which is the total number of variables minus one.

Continue ReadingThe more predictor variables in the model, the larger the variance between each variable. A predictor variable is an aspect or condition the researcher believes shares a relationship with the outcome of a study. There is an increase in the adjusted r-square from the r-square when the additional predictor variables make the model a better fit. Adjusted r-square is a ratio on a scale from zero to one.

Researchers use the adjusted r-square to test the strength of the model. It is also an indicator of which variables to include in a data model. If the researcher removes one variable and the adjusted r-square increases, the researcher knows there is a problem with that variable. In a strong statistical model, the adjusted r-square is higher than the r-square. Texas University explains that a low adjusted r-square suggests a model issue with applying the results of the study to the general population. This problem arises when the solution includes too many independent variables. This process is also useful to form an analysis of variance in statistics.

Learn more about Statistics-
Q:
## What is a Rayleigh distribution?

A: The Rayleigh distribution is the distribution of the magnitude of a two-dimensional random vector whose coordinates are independent and identically distrib... Full Answer >Filed Under: -
Q:
## How do you calculate frequency?

A: To calculate wave frequency in physics, one must know about the variables used in different formulas. One formula states that frequency (f) is equal to the... Full Answer >Filed Under: -
Q:
## What are some examples of qualitative and quantitative variables?

A: Examples of quantitative variables include height and weight, while examples of qualitative variables include hair color, religion and gender. Quantitative... Full Answer >Filed Under: -
Q:
## What is common response in statistics?

A: In statistics, common response refers to changes in both the explanatory and response variables that result from changes in another variable. The variable ... Full Answer >Filed Under: