Q:

How many millimeters equal 1 meter?

A:

Quick Answer

One thousand millimeters is equal to 1 meter. The meter is the standard unit of length in the International System of Units, also known as the metric system. "Metre" is the standard spelling for all English-speaking countries except the United States. "Meter" is the accepted U.S. spelling.

Continue Reading
How many millimeters equal 1 meter?
Credit: Emelio Ereza age fotostock Getty Images

Full Answer

While the definition of meter has changed over time, since 1983 the universally accepted International System of Units definition is "the length of the path travelled by light in vacuum during a time interval of 1/299,792,458 of a second."

The metric system is based on 10s, where each unit is 10 times larger than the previous one. A millimeter is equal to 0.001 of a meter since it's 1,000 times smaller than a meter.

Learn more about Calculus

Related Questions

  • Q:

    What are some examples of the squeeze theorem?

    A:

    Examples of the squeeze theorem, g(x) ? f(x) ? h(x), show that if f(x) is always greater than g(x) and if f(x) is always less than h(x), then when g(x) is equal to h(x), f(x) must also be equal. Since f(x) always squeezes between g(x) and h(x), it must be equal when g(x) and h(x) are equal.

    Full Answer >
    Filed Under:
  • Q:

    What is chain rule integration?

    A:

    The term chain rule integration refers to the integration technique that reverses the process of differentiating using the chain rule. Chain rule integration is more commonly known as the substitution or change in variable techniques of integration.

    Full Answer >
    Filed Under:
  • Q:

    What is the shell method in calculus?

    A:

    The shell method in calculus is a procedure for finding the volume of a solid revolving around an axis. This method is also referred to as the method of cylindrical shells.

    Full Answer >
    Filed Under:
  • Q:

    What is integral cos 2?

    A:

    The integral of cosine squared is equal to x/2 + (1/4)sin(2x) + C, where C is a constant. The integral can be solved by using the half-angle identity of the cosine squared function, where cos2(x) = 1/2 + (1/2)cos(2x).

    Full Answer >
    Filed Under:

Explore