Q:

What is the integral of arctan?

A:

Quick Answer

The integral of arctan is x times the inverse tangent of x, minus one-half of the natural logarithm of one plus x squared, plus the constant expressed as C. Using mathematical notation, it is expressed as the integral of arctan(x) dx = x * arctan(x) - (1/2) ln(1+x^2) + C.

Continue Reading

Full Answer

The integral of arctan is found by using the integration technique known as integration by parts. Using this technique, u is equal to one plus x squared, and du over dx is 2x. The function arctan is also referred to as the inverse tangent function, notes University of California at Davis.

Learn more about Algebra

Related Questions

Explore