Q:
# Are All Integers Rational Numbers?

**All integers are rational numbers.** A rational number is in the form a/b, where "a" and "b" are integers, and "b" is not equal to zero. Integers are a subset of the entire set of rational numbers.

An integer is any whole number regardless of whether it is positive, negative or zero. A rational number is considered a ratio or division of two different integers. Any integer can be expressed in the form a/b, where "a" and "b" are integers. The rational representation of any integer "n" can be described as n/1, because any real number divided by 1 is equal to itself.

Learn more about Numbers-
Q:
## Who Discovered Rational Numbers?

A: The treatment of all numbers as rational is traced to Pythagoras, an ancient Greek mathematician. Pythagoras believed that any number could be expressed as... Full Answer >Filed Under: -
Q:
## Why Does "Q" Represent Rational Numbers?

A: "Q" represents rational numbers because all rational numbers are a quotient. This means that each rational number can be expressed by a fraction with a den... Full Answer >Filed Under: -
Q:
## Are Fractions Integers?

A: Some, but not all, fractions are integers. Fractions that can be simplified so that they have a 1 as the denominator are integers. Fractions that cannot be... Full Answer >Filed Under: -
Q:
## What Are "consecutive Integers"?

A: Consecutive integers are two integers that sit adjacent to each other in a number sequence. An integer is a positive or negative whole number. The lowest v... Full Answer >Filed Under: