Sterile neutrino

A sterile neutrino is a hypothetical neutrino that does not interact via any of the fundamental interactions of the Standard Model except gravity. It is a right-handed neutrino or a left-handed anti-neutrino.

Such a particle belongs to a singlet representation with respect to the strong interaction and the weak interaction and has zero weak hypercharge, zero weak isospin and zero electric charge. Sterile neutrinos would still interact via gravity, so if they are heavy enough, they could explain cold dark matter or warm dark matter. In grand unification theories such as the Georgi-Glashow model they also interact via gauge interactions which are extremely suppressed at ordinary energies because their gauge boson is extremely massive.

Sterile neutrinos may mix with ordinary neutrinos via a Dirac mass. The sterile neutrinos and ordinary neutrinos may also have Majorana masses. In certain models, both Dirac and Majorana masses are used in a seesaw mechanism, which drives ordinary neutrino masses down and makes the sterile neutrinos much heavier than the Standard Model interacting neutrinos. In some models the heavy neutrinos can be as heavy as the GUT scale (~1012 GeV). In other models they could be lighter than the weak gauge bosons W and Z as in the so-called νMSM model where their masses are between GeV and keV. Light (with the mass ~1 eV) sterile neutrino was suggested as a possible explanation of the results of LSND experiment. On April 11, 2007, researchers at the MiniBooNE experiment at Fermilab announced that they had not found any evidence supporting the existence of such a sterile neutrino. More recent results and analysis have provided some support for the existence of the sterile neutrino.

See also


External links

Search another word or see Sterile_neutrinoon Dictionary | Thesaurus |Spanish
Copyright © 2015, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature