MGM-31 Pershing

Pershing was a family of solid-fueled two-stage medium-range ballistic missiles designed and built by Martin Marietta to replace the Redstone missile as the United States Army's primary theater-level weapon. The Pershing systems lasted over 30 years from the first test version in 1960 through final elimination in 1991. It was named for General John J. Pershing. The systems were managed by the US Army Missile Command (MICOM) and deployed by the United States Army Field Artillery Corps.


In 1956, George Bunker, the president of The Martin Company, paid a courtesy call on General John Medaris of the Army Ballistic Missile Agency (ABMA) at Redstone Arsenal. Medaris noted that it would be advantageous to the Army if there were a missile plant in the vicinity of Cape Canaveral. Martin began construction of their Sand Lake facility in Orlando, Florida and opened it in late 1957. Ed Uhl, co-inventor of the bazooka, was the vice president and general manager of the new facility.

The US Army began studies in 1956 for a ballistic missile with a required range of 500–750 nautical miles (900–1400 km). Later that year, Secretary of Defense Charles E. Wilson issued the Wilson Memorandum that stripped the US Army of all missiles with a range of or greater. When the memorandum was rescinded in 1958, ABMA began development. Initially called the Redstone-S, where the S meant solid propellant, the name was quickly changed to Pershing.

Seven companies were selected to provide proposals: Chrysler, Lockheed, Douglas, Convair, Firestone, Sperry-Rand and The Martin Company. Secretary of the Army Wilber Brucker— former governor of Michigan — was apparently under pressure from home to award the contract to a Michigan company. Chrysler was the only contractor from Michigan, but Medaris convinced Brucker to leave the decision entirely in the hands of ABMA. After a selection process by General Medaris and Dr. Arthur Rudolph, The Martin Company (later Martin Marietta after a 1961 merger) was awarded a CPFF (cost-plus-fixed-fee) contract for research, development, and initial production of the Pershing system under the technical supervision and concept control of the government. Martin's quality control manager for the Pershing, Phil Crosby developed the concept of Zero Defects that enhanced the production and reliability of the system.

Pershing I


The first XM14 R&D test missile, was launched on February 25, 1960. The first two-stage launch from the tactical erector launcher (EL) was in January 1962. The first test flights used only the first stage, but by the end of 1962, full range two stage flights had been successful. For training there was an inert Pershing I missile designated XM19. In June 1963, the XM14 and XM19 Pershing missiles were redesignated as XMGM-31A and XMTM-31B, respectively. The production version of the tactical missile was subsequently designated as MGM-31A


Pershing made its first public appearance at Fort Benning in May of 1960 as part of a display for President Eisenhower. Pershing later performed as part of the inaugural parade of President Kennedy in 1961. President Kennedy and other dignitaries visited White Sands Missile Range in 1963 to observe test firings of various weapons systems– Pershing was demonstrated, but not fired.

The 2nd Missile Battalion, 44th Artillery was activated at Fort Sill as the first tactical Pershing unit. The 56th Field Artillery Group was activated in Heilbronn, West Germany to become the parent unit for three missile battalions. The 4th Missile Battalion 41st Artillery was formed in 1963 and deployed to Schwäbisch Gmünd, West Germany. This was followed by the deployment of the 1st Battalion 81st Field Artillery in Neu-Ulm. In 1964, the Secretary of Defense assigned the Pershing weapon system to a Quick Reaction Alert (QRA) role after a DOD study showed that Pershing would be superior to tactical aircraft for the QRA mission. The Luftwaffe began training at Fort Sill. The 2nd Missile Battalion, 79th Artillery was formed for deployment to South Korea, but was deactivated before equipment was issued. In 1965, three US Army battalions and two Luftwaffe wings were operational in Germany.


The Pershing I missile was powered by two Thiokol solid-propellant engines. Since a solid-propellant engine cannot simply be turned off, selective range was achieved by thrust reversal and case vent. The rocket stages were attached with splice bands and explosive bolts. As directed by the onboard guidance computer, the bolts would explode and eject the splice band. Another squib would open the thrust reversal ports in the forward end of the stage and ignite the propellant in the forward end, causing the engine to reverse direction. During testing, it was found that the second stage would draft behind the warhead and cause it to drift off course, so an explosive charge was added to the side of the engine that would open the case and vent the propellant. The range could be graduated but the maximum was . The missile was steered by jet vanes in the rocket nozzles and air vanes on the engine case. Guidance was provided by an onboard analog guidance computer and a Eclipse-Pioneer ST-120 (Stable Table-120) inertial navigation system. The warhead could be conventional explosive or a W50 nuclear warhead with 400 kT yield.

Ground equipment

The Pershing I firing platoon consisted of four M474 tracked-vehicles– by comparison, Redstone needed twenty vehicles. The EL transported the two stages and the guidance section as an assembly and provided the launch platform after the warhead was mated. It utilized a removable erector launcher designed by Diamond Match and manufactured by FMC Corp. The warhead carrier transported the warhead and the azimuth laying set used to position the missile. The programmer test station (PTS) and power station (PS) were mounted on one carrier.

The programmer-test station (PTS) featured rapid missile checkout and countdowns, with complete computer control, and automatic selftest and malfunction isolation. Additionally, the PTS would perform tests that simulated airborne missile operation, programed the trajectory of the missile, and controlled the firing sequence. Plug-in micromodules, increased maintainability and allowed the PTS operator to perform 80% of all repairs at the firing position. A turbine driven Power Station, mounted behind the PTS, provided the primary electrical and pneumatic power and conditioned air for the missile and ground support equipment at the firing position.

The AN/TRC-80 Radio Terminal Set was produced by Collins Radio Company specifically for the Pershing system. The "Track 80" used an inflatable dish antenna to provide line-of-sight or tropospheric-scatter voice and teletype communications between missile firing units and higher headquarters. The erector-launcher, PTS, PS and RTS could be removed from the carriers and air-transported in fourteen CH-47 Chinook loads.


The missile had to be positioned or "laid in" on a pre-surveyed site with a system of three theodolites. The missile was oriented to north: an operator used a theodolite aimed at a window in the guidance section of the missile. Using a control box, the ST-120 inertial guidance system in the guidance section was rotated until it was aligned; at this point the missile "knew" which direction was north.

Satellite launcher

In 1961, Martin proposed a satellite launch system based on the Pershing. Pegasus would have had a lighter, simplified guidance section and a short third stage booster. A 60 pound payload could be boosted to a circular orbit, or to an elliptical orbit with a apogee. Pegasus would have used the Pershing erector-launcher and could be emplaced in any open area. Martin seems to have been targeting the nascent European space program, but this program was never developed.


In 1965, the Army contracted with the Applied Physics Laboratory (APL) of Johns Hopkins University to develop and implement a test and evaluation program. APL provided technical support to the Pershing Operational Test Unit (POTU), and identified problem areas and improved the performance and survivability of the Pershing systems.

Pershing IA


In 1964, a series of operational tests and follow-on tests were performed to determine the reliability of the Pershing I. The Secretary of Defense then requested that the Army define the modifications required to make Pershing suitable for the quick reaction alert (QRA) role. The Pershing IA development program was approved in 1965, and the original Pershing was renamed to Pershing I. Martin Marietta received the Pershing IA production contract in mid-1967. The 2nd Battalion, 44th Field Artillery received equipment at Fort Sill in 1969. Project SWAP replaced all of the Pershing equipment in Germany by mid-1970 and the first units quickly achieved QRA status.

Pershing IA was a quick reaction alert system and so had faster vehicles, launch times and newer electronics. The total number of launchers was increased from eight to 36 per battalion. It was deployed from May 1969 and by 1970 almost all the Pershing I systems had been upgraded to Pershing IA under Project SWAP. Production of the Pershing IA missile ended in 1975 and reopened in 1977 to replace missiles expended in training. In the mid-1970s the Pershing IA system was further improved to allow the firing of a platoon's three missiles in quick succession and from any site without the need for surveying. 754 Pershing I and Pershing IA missiles were built with 180 deployed in Europe.


The battalions in Europe were reorganized under new tables of organization and equipment (TOE); an infantry battalion was authorized and formed to provide additional security for the system; and, the 56th Artillery Group was reorganized and redesignated the 56th Field Artillery Brigade. Due to the nature of the weapon system, officer positions were increased by one grade: batteries were commanded by a major instead of a captain; battalions were commanded by a colonel and the brigade was commanded by a brigadier general.

Pershing la was deployed with three US battalions in Europe and two Federal Republic of Germany Luftwaffe wings. Each battalion or wing had 36 mobile launchers. During peacetime operations, a portion of the Pershing IA assets was deployed on the QRA mission. The remainder would be conducting field training or were maintained in kasernes awaiting alert. The system was designed to be highly mobile, permitting its dispersal to clandestine sites in times of alert or war and was depioyed at distances greater than 100 km behind the forward edge of battle area or political border. Owing to its mobility and setback, Pershing was considered one of the most survivable theater nuclear weapons ever deployed in Europe.

The primary mission in the Supreme Allied Commander, Europe scheduled plan took one of two forms: peacetime or an increased state of readiness called period of tension. Different levels or techniques of tasking were used for these mission forms. The peacetime quick reaction alert role required that for each battalion or wing, one firing battery or a portion thereof would be combat alert status (CAS) on a permanent hard site, covering assigned targets.

In peacetime the four batteries of each battalion rotated through four states or conditions of alert readiness, the highest being that of the CAS battery. The purpose of this rotation was to assume the CAS status, to share the burden of CAS responsibility, to provide time for field tactical training and equipment maintenance, and to give ample leave and pass time to personnel without adverse impact on operational requirements.

During periods of increased tension, the firing batteries of each battalion were deployed to previously unused field tactical sites. At these sites, they assumed responsibility for coverage of all assigned targets. During transition from the peacetime to full combat status, coverage was maintained on the highest priority targets that were assigned to the peacetime CAS batteries.

Once all firing batteries were at their field sites, the firing elements of the battalions werer deployed by platoons, which were then separated from each other geographically to reduce vulnerability. The platoons then moved to new firing positions on a random schedule to increase survivability.


The erector launcher (EL) was a modified low-boy flat-bed trailer towed by a Ford M757 5-ton tractor. The erection booms used a 3,000 psi pneumatic over hydraulic system that could erect the 5 ton missile from horizontal to vertical in nine seconds. The PTS and PS were mounted on a Ford M656 truck. Launch activation was performed from a remote fire box that could be deployed locally or mounted in the battery control central (BCC). One PTS controlled three launchers— when one launch count was complete, ten large cables were moved to the next launcher.

Further improvements

A repackaging effort of the missile and power station was completed in 1974 to provide easier access to missile components, reduce maintenance, and improve reliability. A new digital guidance and control computer combined the functions of the analog control computer and the analog guidance computer into one package. The mean corrective maintenance time was decreased from 8.7 hours to a requirement of 3.8 hours. The reliability inceased from 32 hours mean time between failures to a requirement of 65 hours. In 1976, the sequential launch adapter (SLA) and the automatic reference system (ARS) were introduced. The SLA was an automatic switching device mounted in a 10 ton trailer that allowed the PTS to remain connected to all three launchers. This allowed all three launchers to remain "hot" and greatly decreasing the time between launches. The ARS eliminated the theodolites previously used to lay and orient the missile. It included a north seeking gyro and a laser link to the ST-120 in the missile. Once the ARS was set up, a cold missile could be oriented in a much shorter time.

Pershing II


In 1973, a task force was established to begin development of a follow on system. The 400 kT warhead was greatly over-powered for the QRA mission, and a smaller warhead required greater accuracy. The contract went to Martin Marietta in 1975 and the first development launches began in 1977. Pershing II was to use the new W85 warhead with a 5-50 kT variable yield or an earth-penetrator W86 warhead. The warhead was to be packaged in a maneuverable reentry vehicle (MARV) with active radar guidance and would be launched with the Pershing I rocket engines. In 1975, the US turned down a request from Israel to purchase the new Pershing II.

The Soviet Union began deployment of the RT-21M Pioneer (SS-20) in 1976. Since the initial version of the SS-20 had a range of and two warheads, the Pershing II requirement was changed to increase the range to as a counter. The hard target capability and W86 warhead were canceled in 1980 and all production Pershing II missiles used the W85.


Because of SALT II agreements, no new launchers could be built, therefore the new missile had to fit onto upgraded Pershing IA launchers. The functions of the vehicle mounted PTS needed for the older systems were consolidated into a panel on the side of the launcher. The prime mover for the launcher was the M983 HEMTT for units in the U.S. and a MAN tractor for units in Germany. The tractors had a crane used for missile assembly and a generator to provide power for the launcher and missile. Since the new guidance system was self-orienting, the launcher could be emplaced on any surveyed site and launched within minutes.

Missile engines

The new rocket engines were built by Hercules. To keep the airframe weight down, the rocket cases were spun out of Kevlar with aluminum attach rings.

Reentry vehicle

The G&CC contained an inertial guidance system that could guide the missile on-target in a pure ballistic mode as a backup. The primary guidance was the Goodyear Aerospace active radar guidance system. Using radar maps of the target area, the missile had an accuracy of circular error probable.

The reentry vehicle (RV) was structurally and functionally divided into three sections: the radar section (RS), warhead section (WHS) and the guidance and control adapter (G&C/A) section. Quick access splices made the RV sections completely replaceable at the firing site.

The radar section consisted of the radar unit with the antenna enclosed in an ablative radome. The function of the radar unit was to transmit radio frequency energy to the target area, receive altitude and video return, and route the detected video and altitude data to the digital correlator unit (DCU) located in the G&C/A section.

The warhead section contained the W85 warhead. Provisions were made within the warhead section for mounting the warhead cables, the rate gyro unit, and the cables that passed from the G&C/A section to the RS.

The G&C/A section consisted of two separate portions, the G&C and adapter, which were connected by a manufacturing splice. At the forward end of the G&C there was a quick access splice for attachment to the warhead section. At the aft end, the adapter was grooved to accept the V-band that spliced the propulsion section to the G&C/A section. The RV separation system consisted of a linear shaped charge ring assembly bolted to the G&C section so that separation occurred just forward of the G&C/A manufacturing splice. A protective collar on the outer surface of the adapter, mounted over the location of the linear shaped charge, provides personnel protection during G&C/A handling operations.

Within the G&C was the Singer-Kearfott inertial navigation system, the G&C computer, the digital correlator unit and actuators to drive the air fins.

Radar area correlator

The highly accurate terminal guidance technique used by the Pershing II RV was radar area correlation, using a Goodyear Aerospace active radar guidance system. This technique compared live radar video return to prestored reference scenes of the target area and determined RV position errors with respect to its trajectory and target location. These position errors were used to update the inertial guidance system, which in turn sent commands to the vane control system to guide the RV to the target.

At a predetermined altitude, the radar unit was activated to provide altitude update data and begin scanning the target area. The analog radar video return was digitized into 2-bit pixels by the correlator unit and was formatted into a 128 by 128 array. The target reference scene data, loaded prior to launch via the ground and missile data links, were also encoded as 2-bit pixels and placed in reference memory formatted in a 256 by 256 array. The reference scene resolution necessary to correspond to the decreasing altitude of the RV was effected by placing four reference data arrays in memory, each representing a given altitude band. This correlation process was performed several times during each of four altitude bands and continued to update the inertial guidance system until just prior to impact.

If for some reason the correlator system failed to operate or if the correlation data quality was determined to be faulty, the inertial guidance system continued to operate and guided the RV to the target area with inertial accuracy only.


Prior to launch, the missile was referenced in azimuth by its gyrocompassing inertial platform. After launch, the missile followed an inertially guided trajectory until RV separation. Attitude and guidance commands during powered flight (except for roll attitude) were executed via the swivel nozzles in the two propulsion sections. Roll control was provided by two movable air vanes on the first stage during first stage flight and by the RV air vanes during second stage flight. The first stage also had two fixed air vanes for stability during first stage powered flight.

The midcourse phase of the trajectory was initiated at RV separation and continued until the terminal phase began. At the beginning of the midcourse phase, the RV was pitched down to orient it for reentry and to reduce its radar cross section. Midcourse attitude was then controlled by the RV vane control system during atmospheric exit and reentry, and by a reaction control system during exoatmospheric flight.

At a predetermined altitude above the target, the terminal phase would begin. A velocity control maneuver (pull up, pull down) was executed under inertial guidance control to slow down the RV and achieve the proper impact velocity. The radar correlator system was activated and the radar scanned the target area. Radar return data was compared to prestored reference data and the resulting position fix information was used to update the inertial guidance system and generate RV steering commands. The RV was then maneuvered to the target by the RV vane control system.


Almost 380 Pershing II missiles were made. They were first deployed in West Germany from January 1984 and the European deployment was completed in late 1985 with a total of 108 launchers.

On January 11, 1985 three soldiers of C Battery, 3rd Battalion, 84th Field Artillery were killed in an explosion at Camp Redleg, Heilbronn. The explosion occurred while removing a missile stage from the storage container during an assembly operation. An investigation revealed that the Kevlar rocket bottle had accumulated a triboelectric charge in the cold dry weather; as the engine was removed from the container the electrical charge began to flow and created a hot spot that ignited the propellant. A moratorium on missile movement was enacted through late 1986 when new grounding and handling procedures were put into place.

In 1982, the 55th Maintenance Battalion was activated as part of the 56th Field Artillery Brigade. The 579th Ordnance Company was deactived and reformed as Headquarters Company and D Company. The three service batteries in the field artillery battalions were deactivated and reformed as forward service companies under the 55th.

In January 1986, there was a major reorganization of the tactical units in Germany. The 56th Field Artillery Brigade was redesignated as the 56th Field Artillery Command and was authorized a major general as a commander. 1st Battalion, 81st Field Artillery was inactivated and reformed as 1st Battalion, 9th Field Artillery in Neu-Ulm, 1st Battalion, 41st Field Artillery was inactivated and reformed as 2nd Battalion, 9th Field Artillery in Schwäbisch-Gmünd and 3rd Battalion, 84th Field Artillery was inactivated and reformed as 4th Battalion, 9th Field Artillery in Heilbronn. With 3rd Battalion, 9th Field Artillery at Fort Sill, all of the firing units were then under the 9th Field Artillery Regiment. The 55th Maintenance Battalion was redesignated as 55th Support Battalion and E Company, 55th Maintenance Battalion was deactivated and reformed as the 193rd Aviation Company.

Pershing IB and Pershing II RR

Pershing IB was a single stage, reduced range version of Pershing II with the same range as the Pershing IA. The Pershing II launcher was designed so that the cradle could be easily repositioned to handle the shorter missile body. The intent was to replace the Luftwaffe Pershing IA systems with Pershing IB, since SALT II limited the range of German owned missiles. Germany agreed to destroy their Pershing IA systems when the US and Soviet Union signed the INF Treaty, thus the Pershing IB was never deployed.

Pershing II Reduced Range (RR) was a follow on concept that would have modified the launchers to hold two single-stage missiles.


The Pershing systems were scrapped following the ratification of the Intermediate-Range Nuclear Forces Treaty on May 27, 1988. The missiles were withdrawn in October 1988; the last of the missiles were destroyed by the static burn of their rockets and subsequently crushed in May of 1991 at the Longhorn Army Ammunition Plant near Caddo Lake, Texas. Although not covered by the treaty, the Luftwaffe unilaterally agreed to the retrograde of the Pershing IA system from their inventory in 1991, and the missiles were destroyed.


The INF treaty only covered the destruction of launchers and rocket motors. The W-85 warheads used in the Pershing II missiles were removed, modified, and reused in B61 gravity bombs. The Pershing II guidance section was re-used in the Hera missile.

The INF Treaty allowed for fifteen inert Pershing II missiles to be retained for display purposes. One is now on display in the Smithsonian's National Air and Space Museum in Washington, D.C., alongside a Soviet SS-20 missile. Another is at the Central Armed Forces Museum in Moscow, Russia, also with a SS-20. A number of inert Pershing I and Pershing IA missiles are displayed in the US and Germany.

Scrap material from the Pershing and SS-20 missiles has been used in several projects. Zurab Tsereteli created a sculpture entitled Good Defeats Evil, a , monumental bronze statue of Saint George fighting the dragon of nuclear war– the dragon is made of sections of the Pershing and SS-20 missiles. The sculpture was donated to the United Nations by the Soviet Union in 1990 and is located on the grounds of the United Nations Headquarters in New York City.

In 1991, Leonard Cheshire's World Memorial Fund for Disaster Relief sold badges of the group logo made of scrap material. Parker created a series of pens with a Memorial Fund badge made of scrap missile material, with half the proceeds going to the fund.


In 2000, a number of U.S. Army Pershing veterans decided to seek out fellow veterans and to start acquiring information and artifacts on the Pershing systems. In 2004, the Pershing Professionals Association was incorporated to meet long-term goals— to preserve, interpret and encourage interest in the history of the Pershing missile systems and the soldiers who served; and to make such information accessible to present and future generations to foster a deeper appreciation of the role that Pershing played in world history. Veterans of the 2nd Battalion, 4th Infantry who had performed security on the Pershing systems formed a sub-chapter known as the Pershing Tower Rats. The two Luftwaffe missile wings in Germany also formed veterans groups.


Pershing has appeared significantly in several types of fiction media. Weird Science is a popular 1985 teen film written and directed by John Hughes; a Pershing II missile is created from a cover of Time'. Pershing has also appeared in the novels Countdown by David Hagberg, Trio: Almost Lost by R. A. Montgomery, The Normandy Code by Nick Carter and Footfall by Larry Niven and Jerry Pournelle. The first few chapters of Sleipnir by Linda Evans are based on the real life experiences of a Pershing guard with the 2nd Battalion, 4th Infantry.


External links


Search another word or see MGMon Dictionary | Thesaurus |Spanish
Copyright © 2015, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature