Definitions

endocytosis

endocytosis

[en-doh-sahy-toh-sis]
endocytosis, in biology, process by which substances are taken into the cell. When the cell membrane comes into contact with a suitable food, a portion of the cell cytoplasm surges forward to meet and surround the material and a depression forms within the cell wall. The depression deepens and the movement of the cytoplasm continues until the food is completely engulfed in a pocket called a vessicle. The vessicle then drifts further into the body of the cell where it meets and fuses with a lysosome, a vessicle normally found in the cell that contains digestive enzymes known as acid hydrolases. The food is then broken down into molecules and ions that are suitable for the cell's use. There are two types of endocytosis: pinocytosis, the engulfing and digestion of dissolved substances, and phagocytosis, the engulfing and digestion of microscopically visible particles. Phagocytosis is the process by which many protozoans obtain most of their food supply. It is also the process through which specialized cells in animals eliminate foreign matter, such as infecting microorganisms, as part of the body's defense system (see blood; immunity). The various phagocytic cells in higher animals are derived from relatively unspecialized cells called stem cells that are either fixed within a network of supporting (reticular) cells and fibers of the spleen, thymus, and bone marrow, or that wander freely throughout body tissues. Many phagocytic cells respond chemically to substances produced by foreign bodies or by degenerating tissue by moving toward the substances, a mechanism known as chemotaxis. When a particle of the proper charge or chemical composition adheres to the cell surface, the cell cytoplasm moves so that it finally surrounds the particle and traps it within a cytoplasmic vacuole. Various enzymes are then secreted into the vacuole to digest the foreign substance. In higher animals each phagocyte can ingest about 5 to 25 invading bacterial cells. Phagocytosis often precedes production of antibodies by the body, but some species of bacteria cannot be phagocytized unless specific antibody is already present. Although phagocytosis is an effective response to infection, some organisms, such as the bacteria causing brucellosis and tuberculosis, can survive for years within the descendant cells of the phagocytes that ingested them. The process of phagocytosis was first described in the late 19th cent. by the Russian zoologist Élie Metchnikoff.
Endocytosis is a process where cells absorb material (molecules such as proteins) from the outside by engulfing it with their cell membrane. It is used by all cells of the body because most substances important to them are large polar molecules, and thus cannot pass through the hydrophobic plasma membrane or cell membrane. The function of endocytosis is the opposite of exocytosis.

Types

The absorption of material from the outside environment of the cell is commonly divided into two processes: phagocytosis and pinocytosis.

  • Phagocytosis (literally, cell-eating) is the process by which cells ingest large objects, such as cells which have undergone apoptosis, bacteria, or viruses. The membrane folds around the object, and the object is sealed off into a large vacuole known as a phagosome.
  • Pinocytosis (literally, cell-drinking). This process is concerned with the uptake of solutes and single molecules such as proteins.
  • Receptor-mediated endocytosis is a more specific active event where the cytoplasm membrane folds inward to form coated pits. These inward budding vesicles bud to form cytoplasmic vesicles.

Endocytosis pathways

There are three types of endocytosis: namely, macropinocytosis, caveolar endocytosis, and clathrin-mediated endocytosis.

  • Macropinocytosis is the invagination of the cell membrane to form a pocket, which then pinches off into the cell to form a vesicle filled with extracellular fluid (and molecules within it). The filling of the pocket occurs in a non-specific manner. The vesicle then travels into the cytosol and fuses with other vesicles such as endosomes and lysosomes.
  • Caveolae consists of the protein caveolin-1 with a bilayer enriched in cholesterol and glycolipids. Caveolae are flask-shape pits in the membrane that resemble the shape of a cave (hence the name caveolae). Uptake of extracellular molecules are also believed to be specifically mediated via receptors in caveolae.
  • Clathrin-mediated endocytosis is the specific uptake of large extracellular molecules such as proteins, membrane localized receptors and ion-channels. These receptors are associated with the cytosolic protein clathrin, which initiates the formation of a vesicle by forming a crystalline coat on the inner surface of the cell's membrane.

Clathrin-mediated endocytosis

The major route for endocytosis in most cells, and the best-understood, is that mediated by the molecule clathrin. This large protein assists in the formation of a coated pit on the inner surface of the plasma membrane of the cell. This pit then buds into the cell to form a coated vesicle in the cytoplasm of the cell. In so doing, it brings into the cell not only a small area of the surface of the cell but also a small volume of fluid from outside the cell.

Vesicles selectively concentrate and exclude certain proteins during formation and are not representative of the membrane as a whole. AP2 adaptors are multisubunit complexes that perform this function at the plasma membrane. The best-understood receptors that are found concentrated in coated vesicles of mammalian cells are the LDL receptor (which removes LDL from circulating blood), the transferrin receptor (which brings ferric ions bound by transferrin into the cell) and certain hormone receptors (such as that for EGF).

At any one moment, about 25% of the plasma membrane of a fibroblast is made up of coated pits. As a coated pit has a life of about a minute before it buds into the cell, a fibroblast takes up its surface by this route about once every 50 minutes. Coated vesicles formed from the plasma membrane have a diameter of about 100nm and a lifetime measured in a few seconds. Once the coat has been shed, the remaining vesicle fuses with endosomes and proceeds down the endocytic pathway. The actual budding-in process, whereby a pit is converted to a vesicle, is carried out by clathrin assisted by a set of cytoplasmic proteins, which includes dynamin and adaptors such as adaptin.

Coated pits and vesicles were first seen in thin sections of tissue in the electron microscope by Thomas Roth and Keith Porter in 1964. The importance of them for the clearance of LDL from blood was discovered by R. G Anderson, Michael S. Brown and Joseph L. Goldstein in 1976. Coated vesicles were first purified by Barbara Pearse, who discovered the clathrin coat molecule, also in 1976.

See also

External links

Search another word or see Endocytosison Dictionary | Thesaurus |Spanish
Copyright © 2014 Dictionary.com, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature