Definitions

Depth_charge

Depth charge

The depth charge is an anti-submarine weapon intended to defeat its target by the shock of exploding near it. Most use explosives and a fuze set to go off at a predetermined depth. Some have been designed to use nuclear warheads. Depth charges can be deployed by both ships and aircraft.

History

The concept of a "dropping mine" was first discussed in 1910, and the idea was developed into practicality when the British Royal Navy’s Commander in Chief, Admiral of the Fleet Sir George Callaghan, requested its production in 1914. The design work was carried out by Herbert Taylor at HMS Vernon Torpedo and Mine School in Portsmouth, England. The first effective depth charge, the "Type D", became available in January of 1916. These were barrel-like casings containing a high explosive, usually TNT or amatol. There were initially two sizes -- a 300-pound (140 kg) charge for fast ships and a 120-pound (55 kg) charge for ships too slow to clear the danger area of the more powerful charge.

A hydrostatic pistol actuated by water pressure at a pre-selected depth detonated the charge. Initial depth settings were 40 feet (12 meters) and 80 feet (24 meters.) Anti-submarine vessels initially carried only two depth charges to be released from a chute at the stern of the ship. The first success was the sinking of U-68 off Kerry, Ireland, on 22 March 1916 by the Q-ship Farnborough. Germany became aware of the depth charge following unsuccessful attacks on U-67 on 15 April 1916 and U-69 on 20 April 1916. UC-19 and UB-29 were the only other submarines sunk by depth charge during 1916.

Numbers of depth charges carried per ship increased to 4 in June 1917, to 6 in August, and to 30 or 40 by 1918. Improved pistols allowed greater depth settings in 50-foot (15-meter) increments to 200 feet (60 meters.) Even the slower ships could safely use the 300-pound depth charge at the greater depths, so the relatively ineffective 120-pound depth charge was withdrawn from service. Monthly use of depth charges increased from 100 to 300 per month during 1917 to an average of 1745 per month during the last 6 months of World War I. The “Type D” could be detonated as deep as 300 feet (91.44 metres) by that date.

The depth charge was such a successful device that it attracted the attention of the United States, which requested full working drawings of the devices in March 1917. Having received them, Commander Fullinwider of the U.S. Bureau of Naval Ordnance and U.S. Navy engineer Minkler made some modifications and then patented it in the U.S. It has been argued this was done to avoid paying the original inventor.

The Royal Navy Type D depth charge was designated the Mark VII by 1939. Initial sinking speed was 7 feet per second (2.1 m/s) with a terminal velocity of 9.9 feet per second (3 m/s) reached at a depth of 250 feet (76 m) if rolled off the stern, or upon water contact from a depth charge thrower. Cast iron weights of 150 pounds (68 kg) were attached to the Mark VII at the end of 1940 to increase sinking velocity to 16.8 feet per second (5.1 m/s). New hydrostatic fuzes increased the maximum detonation depth to 900 feet. The Mark VII's 290 pound (132 kg) Amatol charge was estimated capable of splitting a 7/8-inch (22 mm) submarine pressure hull at a distance of 20 feet (6.1 m), and forcing the submarine to surface at twice that distance. Change of explosive to Torpex (or Minol) at the end of 1942 was estimated to increase those distances to 26 feet (7.9 m) and 52 feet (15.8 m).

The British Mark X depth charge weighed 3000 pounds (1383 kg) and was launched from 21-inch (53 cm) torpedo tubes of older destroyers to achieve a sinking velocity of 21 feet per second (6.4 m/s). The launching ship needed to clear the area at 11 knots to avoid damage, and the charge was seldom used.

The tear-drop-shaped United States Mark 9 depth charge entered service in the spring of 1943. The charge was 200 pounds (91 kg) Torpex with a sinking speed of 14.4 feet per second (4.4 m/s) and depth settings up to 600 feet. Later versions increased depth to 1000 feet (305 m) and sinking speed was increased to 22.7 feet per second (6.9 m/s) with increased weight and improved streamlining.

Although the explosions of the standard United States 600-pound (270 kg) Mark 4 or Mark 7 depth charge used in World War II were nerve-wracking to the target, an undamaged U-boat’s pressure hull would not rupture unless the charge detonated closer than about five meters. Placing the weapon within this range was entirely a matter of chance and quite unlikely as the target maneuvered evasively during the attack. Most U-boats sunk by depth charges were destroyed by damage accumulated from a long barrage rather than by a single carefully-aimed attack. Many survived hundreds of depth charge detonations over a period of many hours; U-427 survived 678 depth charge blasts aimed at her in April 1945, though many may have detonated a considerable distance from the target.

Delivery mechanisms

The first delivery mechanism was to simply roll the "ashcans" off racks at the stern of the attacking vessel. Originally depth charges were simply placed at the top of a ramp and allowed to let roll. Improved racks, which could hold several depth charges and release them remotely with a trigger, were developed towards the end of the First World War. These racks remained in use throughout World War II, because they were simple and easy to reload.

Some Royal Navy trawlers used for anti-submarine work during 1917–1918 had a thrower on the forecastle for a single depth charge, but there do not seem to be any records of it being used in action. Specialized depth charge projectors were developed to generate a wider dispersal pattern when used in conjunction with rack-deployed charges. The first of these projectors could throw a charge 40 yards and became operational in August 1917. Projectors called Y-guns (in reference to their basic shape) became available in 1918. Mounted on the centerline of the ship with the arms of the "Y" pointing towards the sides of the ship, a depth charge was cradled on a shuttle inserted into each arm. An explosive propellant charge was detonated in the vertical column of the Y-gun to propel a depth charge about 150 feet (50 meters) over each side of the ship. The main disadvantage of the Y-gun is that it must be mounted on the centerline of a ship's deck, which may otherwise be occupied by superstructure, masts, or gun turrets.

The K-gun, made standard in 1942, replaced the Y-gun as the primary depth charge projector. K-guns could be mounted on the periphery of a ship's deck, thus freeing up valuable centerline space. The K-guns were often used together with stern racks to create patterns of six to ten charges. In all cases, the attacking ship needed to be moving above a certain speed or it would be damaged by the force of its own weapons.

Depth-charges can also be dropped from an attacking aircraft against submarines. At the start of World War II, Britain's aerial anti-submarine weapon was the 100 lb anti-submarine bomb. This weapon was too light and ultimately, a failure. Indeed, on September 5, 1939, a Royal Air Force Avro Anson of 233 squadron was destroyed when its own A/S bomb skipped off the surface of the water and detonated under the aircraft. To remedy the failure of this weapon, the Royal Navy's 450 lb Mark VII depth charge was modified for aerial use by the addition of a streamlined nose fairing and stabilising fins on the tail. Later depth charges would be developed specifically for aerial use. Such weapons still have utility today and are in limited use, particularly for shallow-water situations where a homing torpedo may not be suitable. Depth charges are especially useful for "flushing the prey" in the event a diesel submarine is lying on the bottom or otherwise hiding with all machinery shut down. Homing torpedoes can be used for the same purpose, but the cost is prohibitive and aircraft and shipboard inventories limited. An example of such a weapon is the BAE Systems Mark 11, deployed by the British Fleet Air Arm.

Effectiveness

The effective use of depth charges required the combined resources and skills of many individuals during an attack. Sonar, helm, depth charge crews and the movement of other ships had to be carefully coordinated. Aircraft depth charge tactics depended upon locating the sub during the day and at night, then quickly attacking once it had been located, as the sub would normally crash-dive to escape attack.

As the Battle of the Atlantic wore on, British and Commonwealth forces became particularly adept at depth charge tactics, and formed some of the first destroyer hunter-killer groups to actively seek out and destroy German U-boats.

The shortcoming of the depth charge as deployed by surface ships was not the weapon itself, but how it was delivered. An attacking vessel would usually detect a submerged contact using its sonar (or in British parlance, Asdic). However, to drop its depth charges it had to pass over the contact to drop them over the stern. As such, sonar contact would be lost immediately prior to attack, thus rendering the hunter blind at the crucial moment. A skillful submarine commander therefore had an opportunity to take successful evasive action. This situation would be remedied by the adoption of the ahead-throwing weapon, allowing contacts to be engaged at a stand-off distance while still in sonar contact.

Pacific theater

In the Pacific, Japanese depth charge attacks initially proved fairly unsuccessful against U.S. and British submarines. Unless caught in shallow water, a U.S. submarine commander could normally dive to a deeper depth in order to escape destruction.

The deficiencies of Japanese depth-charge tactics were revealed in a press conference held by U.S. Congressman Andrew J. May, a member of the House Military Affairs Committee who had visited the Pacific theater and received many intelligence and operational briefings. Incredibly, May mentioned the highly sensitive fact that American submarines had a high survivability rate because Japanese depth charges were fuzed to explode at too shallow a depth.

Various press associations sent this leaked news story over their wires, compounding the danger, and many newspapers (including one in Honolulu, Hawaii) published it. Soon, Japanese forces were resetting their depth charges to explode at a more effective average depth of 75 m (250 feet), to the detriment of American submariners. Vice Admiral Charles A. Lockwood, commander of the U.S. submarine fleet in the Pacific, later estimated that May's revelation cost the United States Navy as many as ten submarines and 800 seamen killed in action.

Later developments

For the reasons expressed above, the depth charge was generally replaced as an anti-submarine weapon. Initially, this was by ahead-throwing weapons such as the British-developed Hedgehog and later Squid. These weapons threw a pattern of warheads ahead of the attacking vessel to bracket a submerged contact. Hedgehog was contact fuzed, but Squid fired small depth-charges with hydrostatic arming. Later developments included the Mark 24 "Fido" acoustic homing torpedo (and later such weapons) or the SUBROC, which was armed with a nuclear depth charge. The USSR, United States and United Kingdom developed anti-submarine weapons using nuclear warheads and these are sometimes referred to as Nuclear Depth Bombs (NDB).

Underwater Explosions

The high explosive in a depth charge undergoes a rapid chemical reaction at an approximate rate of 8000 meters (25000 feet) per second. The gaseous products of that reaction momentarily occupy the volume previously occupied by the solid explosive, but at very high pressure. This pressure is the source of the damage and is proportional to the explosive density and the square of the detonation velocity. A depth charge gas bubble expands to reach the pressure of the surrounding water. This gas expansion propagates a shock wave. The density difference of the expanding gas bubble from the surrounding water causes the bubble to rise toward the surface. Unless the explosion is shallow enough to vent the gas bubble to the atmosphere during its initial expansion, the momentum of water moving away from the gas bubble will create a gaseous void of lower pressure than the surrounding water. Surrounding water pressure then collapses the gas bubble with inward momentum causing excess pressure within the gas bubble. Re-expansion of the gas bubble then propagates another potentially damaging shock wave. Cyclical expansion and contraction continues until the gas bubble vents to the atmosphere.

Very large depth charges, including nuclear weapons, may be detonated at sufficient depth to create multiple damaging shock waves. Very large depth charges may produce damage at distance where reflected shock waves from the ocean floor and/or ocean surface converge to amplify radial shock waves. Submarines or surface ships may be damaged if operating in convergence zones of their own depth charge detonations.

See also

References

External links

Search another word or see Depth_chargeon Dictionary | Thesaurus |Spanish
Copyright © 2014 Dictionary.com, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature
FAVORITES
RECENT

;