bremsstrahlung: see X ray.
Bremsstrahlung (pronounced , from German bremsen "to brake" and Strahlung "radiation", i.e. "braking radiation" or "deceleration radiation"), is electromagnetic radiation produced by the deceleration of a charged particle, such as an electron, when deflected by another charged particle, such as an atomic nucleus. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum. The phenomenon was discovered by Nikola Tesla during high frequency research he conducted between 1888 and 1897.

Bremsstrahlung may also be referred to as free-free radiation. This refers to the radiation that arises as a result of a charged particle that is free both before and after the deflection (acceleration) that causes the emission. Strictly speaking, bremsstrahlung refers to any radiation due to the acceleration of a charged particle, which includes synchrotron radiation; however, it is frequently used (even when not speaking German) in the more narrow sense of radiation from electrons stopping in matter.

The word Bremsstrahlung is retained from the original German to describe the radiation which is emitted when electrons are decelerated or "braked" when they are fired at a metal target. Accelerated charges give off electromagnetic radiation, and when the energy of the bombarding electrons is high enough, that radiation is in the x-ray region of the electromagnetic spectrum. It is characterized by a continuous distribution of radiation which becomes more intense and shifts toward higher frequencies when the energy of the bombarding electrons is increased.

Outer Bremsstrahlung

"Outer bremsstrahlung" is the term applied in cases where the energy loss by radiation greatly exceeds that by ionization as a stopping mechanism in matter. This is seen clearly for electrons with energies above 50 keV.

Inner Bremsstrahlung

"Inner bremsstrahlung" is the term applied to the less frequent case of radiation emission during beta decay, resulting in the emission of a photon of energy less than or equal to the maximum energy available in the nuclear transition. Inner bremsstrahlung is caused by the abrupt change in the electric field in the region of the nucleus of the atom undergoing decay, in a manner similar to that which causes outer bremsstrahlung. In electron and positron emission the photon's energy comes from the electron/nucleon pair, with the spectrum of the bremsstrahlung decreasing continuously with increasing energy of the beta particle. In electron capture the energy comes at the expense of the neutrino, and the spectrum is greatest at about one third of the normal neutrino energy, reaching zero at zero energy and at normal neutrino energy.

Beta particle emitting substances sometimes exhibit a weak radiation with continuous spectrum that is due to both outer and inner bremsstrahlung, or to one of them alone.

Secondary radiation

Bremsstrahlung is a type of "secondary radiation", in that it is produced as a result of stopping (or slowing) the primary radiation (beta particles). In some cases, e.g. 32P, the Bremsstrahlung produced by shielding this radiation with the normally used dense materials (e.g. lead) is itself dangerous; in such cases, shielding must be accomplished with low density materials, e.g. Plexiglass (lucite), plastic, wood, or water ; because the rate of deceleration of the electron is slower, the radiation given off has a longer wavelength and is therefore less penetrating.

Dipole Radiation

Suppose that a particle of charge q experiences an acceleration vec{a} which is collinear with its velocity vec{v} (this is the relevant case for linear accelerators). Then, the relativistic expression for the angular distribution of the bremsstrahlung (considering only the dominant dipole radiation contribution), is
frac{dP(theta)}{dOmega} = frac{q^2 a^2}{16 pi^2 epsilon_0 c^3}frac}{(1 - beta cos{theta})^5},
where beta = v/c and theta is the angle between vec{a} and the point of observation.

Integrating over all angles then gives the total power emitted as

P_{a parallel v} = frac{q^2 a^2 gamma^6}{6 pi epsilon_0 c^3},
where gamma is the Lorentz factor .

The general expression for the total radiated power is

P = frac{q^2 gamma^4}{6 pi epsilon_0 c}
left(dot{beta}^2 + frac{(vec{beta} cdot dot{vec{beta}})^2}{1 - beta^2}right) where dot{beta} signifies a time derivative of beta. Note, this general expression for total radiated power simplifies to the above expression for the specific case of acceleration parallel to velocity (vec{beta} cdot dot{vec{beta}} = beta dot{beta}), by noting that dot{beta} = a/c and gamma = (1-beta^2)^{-1/2}. For the case of acceleration perpendicular to the velocity (vec{beta} cdot dot{vec{beta}} = 0 ) (a case that arises in circular particle accelerators known as synchrotrons), the total power radiated reduces to
P_{a perp v} = frac{q^2 a^2 gamma^4 }{6 pi epsilon_0 c^3}.
The total power radiated in the two limiting cases is proportional to gamma^4 (a perp v) or gamma^6 (a parallel v). Since E = gamma m c^2, we see that the total radiated power goes as m^{-4} or m^{-6}, which accounts for why electrons lose energy to bremsstrahlung radiation much more rapidly than heavier charged particles (e.g, muons, protons, alpha particles). This is the reason a TeV energy electron-positron collider (such as the proposed International Linear Collider) cannot use a circular tunnel (requiring constant acceleration), while a proton-proton collider (such as the Large Hadron Collider) can utilize a circular tunnel. The electrons lose energy due to bremsstrahlung at a rate (m_p/m_e)^4 approx 10^{13} quicker than protons do.

From plasma (thermal Bremsstrahlung)

In a plasma the free electrons are constantly producing Bremsstrahlung in collisions with the ions. In a uniform plasma, with thermal electrons (distributed according to the Maxwell–Boltzmann distribution with the temperature T_e), the power spectral density (power per angular frequency interval per volume, integrated over the whole solid angle) of the Bremsstrahlung radiated, is calculated to be

{dP_mathrm{Br} over domega} = {4sqrt 2 over 3sqrtpi} left[n_er_e^3 right]^2 left[{ frac{m_ec^2}{k_B T_e} } right]^{1/2} left[{m_ec^2 over r_e^3} right] Z_mathrm{eff} E_1(w_m) ,

where n_e is the number density of electrons, r_e is the classical radius of electron, m_e is its mass, k_B is the Boltzmann constant, and c is the speed of light. Note that all but the third bracketed factor on the right-hand side are dimensionless. The "effective" ion charge state Z_mathrm{eff} is given by an average over the charge states of the ions:

Z_mathrm{eff} = sum_Z Z^2 {n_Z over n_e} ,

where n_Z is the number density of ions with charge Z.

The special function E_1 is defined in the exponential integral article, and

w_m = {omega^2 m_e over 2k_m^2 k_B T_e}

(k_m is a maximum or cutoff wavenumber). k_m = K/lambda_B when k_B T_e>Z^2 27.2 eV (for a single ion species; 27.2 eV is twice the ionization energy of hydrogen) where K is a pure number and lambda_B=hbar/(m_e k_B T_e)^{1/2} is a thermal electron de Broglie wavelength. Otherwise, k_m propto 1/l_c where l_c is the classical Coulomb distance of closest approach.

For the case k_m = K/lambda_B, we find

w_m = {1 over 2K^2} left[frac{hbaromega}{k_B T_e}right]^2 .

dP_mathrm{Br}/domega is infinite at omega=0, and decreases rapidly with omega. The resulting power density, integrated over all frequencies, is finite and equals

P_mathrm{Br} = {8 over 3} left[n_er_e^3 right]^2 left[{k_B T_e over m_ec^2} right]^{1/2} left[{m_ec^3 over r_e^4} right] Z_mathrm{eff} alpha K .

Note the appearance of the fine structure constant alpha due to the quantum nature of lambda_B. In practical units, a commonly used version of this formula is

P_mathrm{Br} [textrm{W/m}^3] = left[{n_e over 7.69 times 10^{18} textrm{m}^{-3} }right]^2 T_e[textrm{eV}]^{1/2} Z_mathrm{eff} .

This formula agrees with the theoretical estimate if we set K=3.17; the value K=3 is suggested by Ichimaru.

For very high temperatures there are relativistic corrections to this formula, that is, additional terms of order kBTe/mec2.

If the plasma is optically thin, the Bremsstrahlung radiation leaves the plasma, carrying part of the internal plasma energy. This effect is known as the Bremsstrahlung cooling.

In astrophysics

The dominant luminous component in a cluster of galaxies is the 107 to 108 Kelvin intracluster medium. The emission from the intracluster medium is characterized by thermal Bremsstrahlung. Thermal Bremsstrahlung radiation occurs when the particles populating the emitting plasma are at a uniform temperature and are distributed according to the Maxwell–Boltzmann distribution

f (v) = 4 pi left(frac{m}{2 pi kT}right)^{3/2} v^2 exp left[ frac{-mv^2}{2kT} right]

where speed, v, is defined as

v = sqrt{v_x^2 + v_y^2 + v_z^2}.

The bulk emission from this gas is thermal Bremsstrahlung. The power emitted per cubic centimeter per second can be written in the compact form

epsilon_mathrm{ff} = 1.4times 10^{-27} T^{1/2} n_{e} n_{i} Z^{2} g_B

with cgs units [erg cm-3 s-1] and where 'ff' stands for free-free, 1.4x10-27 is the condensed form of the physical constants and geometrical constants associated with integrating over the power per unit area per unit frequency, ne and ni are the electron and ion densities, respectively, Z is the number of protons of the bending charge, gB is the frequency averaged Gaunt factor and is of order unity, and T is the global x-ray temperature determined from the spectral cut-off frequency


above which exponentially small amount of photons are created because the energy required for creation of such a photon is available only for electrons in the tail of the Maxwell distribution.

This process is also known as Bremsstrahlung cooling since the plasma is optically thin to photons at these energies and the energy radiated is emitted freely into the universe.

This radiation is in the energy range of X-rays and can be easily observed with space-based telescopes such as Chandra X-ray Observatory, XMM-Newton, ROSAT, ASCA, EXOSAT, Astro-E2, and future missions like Con-X and NeXT

General treatment

For a much more complete discussion, see Haug.


See also

External links

Look up {{{1 in Wiktionary, the free dictionary

Search another word or see Bremsstrahlungon Dictionary | Thesaurus |Spanish
Copyright © 2015, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature