Definitions
Related Questions

Bomb

hydrogen bomb

or H-bomb or thermonuclear bomb

Weapon whose enormous explosive power is generated by the nuclear fusion of hydrogen isotopes. The high temperatures required for the fusion reaction are produced by detonating an atomic bomb (which draws its energy from nuclear fission). The bomb's explosion produces a blast that can destroy structures within a radius of several miles, an intense white light that can cause blindness, and heat fierce enough to set off firestorms. It also creates radioactive fallout that can poison living creatures and contaminate air, water, and soil. Hydrogen bombs, which may be thousands of times more powerful than atomic bombs, can be made small enough to fit in the warhead of a ballistic missile (see ICBM) or even in an artillery shell (see neutron bomb). Edward Teller and other U.S. scientists developed the first H-bomb and tested it at Enewetak atoll (Nov. 1, 1952). The Soviet Union first tested an H-bomb in 1953, followed by Britain (1957), China (1967), and France (1968). Most modern nuclear weapons employ both fusion and fission.

Learn more about hydrogen bomb with a free trial on Britannica.com.

Bomb with a guidance system that directs its path toward a target. It is steered by fins or wings on the bomb that move in response to guidance commands. Guidance systems may be electro-optical, laser, infrared, or inertial. Electro-optical systems send pictures of the area so that the bomb can be guided onto the target. Laser-guided bombs follow the reflections of a laser beam trained onto the target by an aircraft or a spotter on the ground. Infrared guidance responds to radiation generated by warm areas of the target. Inertial navigation is based on inputting coordinates derived from radar systems or from Global Positioning System satellites into the bomb's gyroscopes. Smart bombs, initially used in the Vietnam War, offer far greater accuracy than traditional gravity, or “dumb,” bombs.

Learn more about smart bomb with a free trial on Britannica.com.

or enhanced radiation warhead

Small thermonuclear weapon that produces minimal blast and heat but releases large amounts of lethal radiation. The blast and heat are confined to a radius of only a few hundred yards; within a somewhat larger area, the bomb throws off a massive wave of neutron and gamma radiation, which is extremely destructive to living tissue. Such a bomb could be used with deadly efficiency against tank and infantry formations on the battlefield without endangering towns or cities only a few miles away. It can be carried in a missile or delivered by a howitzer or even an attack aircraft.

Learn more about neutron bomb with a free trial on Britannica.com.

or flying bomb or buzz bomb

German missile of World War II. The forerunner of modern cruise missiles, it was about 25 ft (8 m) long and had a wingspan of about 18 ft (5.5 m). It was launched from catapult ramps or sometimes from aircraft; it carried an explosive warhead of almost 1,900 lbs (850 kg) and had an average range of 150 mi (240 km). More than 8,000 V-1s were launched against London in 1944–45, and a smaller number against Belgium. Seealso V-2 missile.

Learn more about V-1 missile with a free trial on Britannica.com.

In volcanology, any unconsolidated volcanic material that has a diameter greater than 1.25 in. (32 mm). Bombs form from clots of wholly or partly liquid lava ejected during a volcanic explosion; they solidify and become rounded during flight. The final shape is determined by the initial size, viscosity, and flight velocity of the magma.

Learn more about bomb with a free trial on Britannica.com.

First atomic bomb test, near Alamogordo, New Mexico, July 16, 1945.

Weapon whose great explosive power results from the sudden release of energy upon the splitting, or fission, of the nuclei of heavy elements such as plutonium or uranium (see nuclear fission). With only 11–33 lb (5–15 kg) of highly enriched uranium, a modern atomic bomb could generate a 15-kiloton explosion, creating a huge fireball, a large shock wave, and lethal radioactive fallout. The first atomic bomb, developed by the Manhattan Project during World War II, was set off on July 16, 1945, in the New Mexico desert. The only atomic bombs used in war were dropped by the U.S. on Hiroshima on Aug. 6, 1945, and on Nagasaki three days later. In 1949 the Soviet Union tested its first atomic bomb, followed by Britain (1952), France (1960), China (1964), India (1974), and Pakistan (1998). Israel and South Africa were suspected of testing atomic weapons in 1979. Seealso hydrogen bomb; Nuclear Non-proliferation Treaty; nuclear weapon.

Learn more about atomic bomb with a free trial on Britannica.com.

A bomb is any of a range of devices that typically rely on the exothermic chemical reaction of an explosive material to produce an extremely sudden and violent release of energy. (A nuclear weapon employs chemical-based explosives to initiate a much larger nuclear-based explosive reaction.) The word comes from the Greek word βόμβος (bombos), an onomatopoetic term with approximately the same meaning as "boom" in English.

The term "bomb" is not usually applied to explosive devices used for civilian purposes such as construction or mining, although the people using the devices may sometimes refer to them as bombs. The military use of the term "bomb", or more specifically aerial bomb, typically refers to airdropped, unpowered explosive weapons most commonly used by air forces and naval aviation. Other military explosive devices not classified as "bombs" include grenades, shells, depth charges (used in water), warheads when in missiles, or land mines. In unconventional warfare, "bomb" can refer to any of a limitless range of explosive devices used as boobytraps or offensive weapons.

Effects

Detonation causes destruction, injury and/or death within the blast radius through three distinct yet inter-related phenomena: shock wave (a.k.a. detonation wave, pressure wave or overpressure), thermal wave and fragmentation.

A shock wave is produced when an explosive event suddenly displaces a volume of air spherically outward from the point of detonation. At its initial creation this phenomenon might best be visualized as a round, thick "shell" of highly compressed air enclosing a vacuum. This shell of pressurized air will expand outward at a speed described by the Chapman-Jouguet condition, typically several to many times the speed of sound.

Even brief exposure to overpressure conditions can cause severe damage, crush injury and death. 1psi overpressure can shatter windows, 5psi can rupture eardrums and shatter a 12-inch concrete wall, and 15psi can cause severe lung damage. Shock waves dissipate as they expand, and the greatest defense against shock injuries is distance from the source of shock. As a point of reference, the overpressure at the Oklahoma City bombing was estimated in the range of 4000psi.

Shock waves produced by explosive events actually have two distinct components, the positive and negative wave. The positive wave shoves outward from the point of detonation, followed by the trailing vacuum space which "sucks back" towards the point of origin as the shock bubble collapses back on itself. This is most clearly observed in footage from the Trinity nuclear test where both the positive and negative effects on buildings are evident.

A thermal wave is created by the sudden release of heat caused by an explosion. Military bomb tests have documented temperatures of 3000 to 4500˚F. While capable of inflicting severe to catastrophic burns and causing secondary fires, thermal wave effects are considered very limited in range compared to shock and fragmentation. This rule has been challenged, however, by military development of thermobaric weapons, which employ a combination of negative shock wave effects and extreme temperature to incinerate objects within the blast radius.

Fragmentation is produced by the acceleration of shattered pieces of bomb casing and adjacent physical objects. This is technically distinct, although practically indistinguishable, from shrapnel, which is physical objects, such as steel balls or nails, added to a bomb specifically to increase injury. While conventionally viewed as small metal shards moving at super- to hypersonic speeds, fragmentation can occur in epic proportions and travel for extensive distances. When the S.S. Grandcamp exploded in the Texas City Disaster on April 16, 1947, one "fragment" of that blast was a two ton anchor which was hurled nearly two miles inland to embed itself in the parking lot of the Pan American refinery.

Types

Experts commonly distinguish between civilian and military bombs. The latter are almost always mass-produced weapons, developed and constructed to a standard design out of standard components and intended to be deployed in a standard way each time. By contrast, civilian bombs are usually custom-made, developed to any number of designs, use a wide range of explosives of varying levels of power and chemical stability, and are used in many different ways. For this reason, civilian-made bombs are generally referred to as improvised explosive devices (IEDs). IEDs are divided into three basic categories by basic size and delivery. Type 1 IEDs are hand-carried parcel or suitcase bombs, type 2 are "suicide vests" worn by a bomber, and type 3 devices are vehicles laden with explosives to act as large-scale stationary or self-propelled bombs, also known as VBIED (vehicle-borne IEDs).

Improvised explosive materials are typically very unstable and subject to spontaneous, unintentional detonation triggered by a wide range of environmental effects ranging from impact and friction to electrostatic shock. Even subtle motion, change in temperature, or the nearby use of cellphones or radios, can trigger an unstable or remote-controlled device. Any interaction with explosive materials or devices by unqualified personnel should be considered a grave and immediate risk of death or dire injury. The safest response to finding an object believed to be an explosive device is to get as far away from it as possible.

The term dirty bomb refers to a specialized device that relies on a comparatively low explosive yield to scatter harmful material over a wide area. Most commonly associated with radiological or chemical materials, dirty bombs seek to kill or injure and then to deny access to a contaminated area until a thorough clean-up can be accomplished. In the case of urban settings, this clean-up may take extensive time, rendering the contaminated zone virtually uninhabitable in the interim.

The most powerful kind of bomb in existence is the hydrogen bomb, a nuclear weapon with destructive power measured in TNT equivalent. The most powerful bombs ever used in combat were the two bombs dropped by the United States to attack Hiroshima and Nagasaki, and the most powerful ever tested was the Tsar Bomba. The most powerful non-nuclear bombs are the United States Air Force's MOAB (officially Massive Ordnance Air Blast, or more commonly known as the "Mother of All Bombs") and the Russian "Father of All Bombs".

Bombs can also be classified according to the way they are set off and radius of effect.

Delivery

The first air-dropped bombs were used by the Austrians in the 1849 siege of Venice. Two hundred unmanned balloons carried small bombs, few bombs actually hit Venice.

The first bombing from a fixed wing aircraft took place in 1911 when the Italians fought Arabs in what is now Libya. The bombs were dropped by hand.

The first significant terrorist bombing in the United States took place nine years later at noon on September 16, 1920 when a VBIED in the form of an explosives-laden horse-drawn wagon, detonated on the lunchtime-crowded streets of New York's financial district. The Wall Street bombing employed many aspects of modern terrorist devices, such as cast-iron slugs added for shrapnel, in a horrific attack that killed 38 and injured some 400 others.

Modern military bomber aircraft are designed around a large-capacity internal bomb bay while fighter bombers usually carry bombs externally on pylons or bomb racks, or on multiple ejection racks which enable mounting several bombs on a single pylon. Modern bombs, precision-guided munitions, may be guided after they leave an aircraft by remote control, or by autonomous guidance. When bombs such as nuclear weapons are mounted on a powered platform, they are called guided missiles.

Some bombs are equipped with a parachute, such as the World War II "parafrag", which was an 11 kg fragmentation bomb, the Vietnam-era daisy cutters, and the bomblets of some modern cluster bombs. Parachutes slow the bomb's descent, giving the dropping aircraft time to get to a safe distance from the explosion. This is especially important with airburst nuclear weapons, and in situations where the aircraft releases a bomb at low altitude.

A hand grenade is delivered by being thrown. Grenades can also be projected by other means using a grenade launcher, such as being launched from the muzzle of a rifle using the M203 or the GP-30 or by attaching a rocket to the explosive grenade as in a rocket propelled grenade (RPG).

A bomb may also be positioned in advance and concealed.

A bomb destroying a rail track just before a train arrives causes a train to derail. Apart from the damage to vehicles and people, a bomb exploding in a transport network often also damages, and is sometimes mainly intended to damage that network. This applies for railways, bridges, runways, and ports, and to a lesser extent, depending on circumstances, to roads.

In the case of suicide bombing the bomb is often carried by the attacker on his or her body, or in a vehicle driven to the target.

The Blue Peacock nuclear mines, which were also termed "bombs", were planned to be positioned during wartime and be constructed such that, if they were disturbed, they would explode within ten seconds.

The explosion of a bomb may be triggered by a detonator or a fuse. Detonators are triggered by clocks, remote controls like cell phones or some kind of sensor, such as pressure (altitude), radar, vibration or contact. Detonators vary in ways they work, they can be electrical, fire fuze or blast initiated detonators and others..

References

External links

Search another word or see Bombon Dictionary | Thesaurus |Spanish
Copyright © 2014 Dictionary.com, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature
FAVORITES
RECENT

;