Definitions

visible spectrum

zodiacal light

Band of very faint light in the night sky. It is thought to be sunlight reflected from interplanetary dust grains lying mostly in the plane of the zodiac, or ecliptic. Seen in the west after twilight and in the east before dawn, it is most clearly visible in the tropics, where the ecliptic is approximately perpendicular to the horizon. In midnorthern latitudes it is best seen evenings in February and March and mornings in September and October (vice versa in midsouthern latitudes). The light can be followed visually to a point about 90° from the Sun. It continues to the region opposite the Sun, where a slight enhancement, the gegenschein, is visible.

Learn more about zodiacal light with a free trial on Britannica.com.

Distance traveled by light moving in a vacuum in one year, at its accepted speed of 186,282 mi/second (299,792 km/second). It equals about 5.9 trillion mi (9.5 trillion km), 63,240 astronomical units, or 0.307 parsec.

Learn more about light-year with a free trial on Britannica.com.

Semiconductor diode that produces visible or infrared light when subjected to an electric current, as a result of electroluminescence. Visible-light LEDs are used in many electronic devices as indicator lamps (e.g., an on/off indicator) and, when arranged in a matrix, to spell out letters or numbers on alphanumeric displays. Infrared LEDs are used in optoelectronics (e.g., in auto-focus cameras and television remote controls) and as light sources in some long-range fibre-optic communications systems. LEDs are formed by the so-called III-V compound semiconductors related to gallium arsenide. They consume little power and are long-lasting and inexpensive.

Learn more about light-emitting diode (LED) with a free trial on Britannica.com.

That portion of the electromagnetic spectrum visible to the human eye. It ranges from the red end to the violet end of the spectrum, with wavelengths from 700 to 400 nanometres and frequencies from 4.3 × 1014 to 7.5 × 1014 Hz. Like all electromagnetic radiation, it travels through empty space at a speed of about 186,000 mi/sec (300,000 km/sec). In the mid-19th century, light was described by James Clerk Maxwell in terms of electromagnetic waves, but 20th-century physicists showed that it exhibits properties of particles as well; its carrier particle is the photon. Light is the basis for the sense of sight and for the perception of colour. Seealso optics; wave-particle duality.

Learn more about light with a free trial on Britannica.com.

The visible spectrum (or sometimes called the optical spectrum) is the portion of the electromagnetic spectrum that is visible to (can be detected by) the human eye. Electromagnetic radiation in this range of wavelengths is called visible light or simply light. A typical human eye will respond to wavelengths in air from about 380 to 750 nm. The corresponding wavelengths in water and other media are reduced by a factor equal to the refractive index. In terms of frequency, this corresponds to a band in the vicinity of 400–790 terahertz. A light-adapted eye generally has its maximum sensitivity at around 555 nm (540 THz), in the green region of the optical spectrum (see: luminosity function). The spectrum does not, however, contain all the colors that the human eyes and brain can distinguish. Unsaturated colors such as pink, and purple colors such as magenta are absent, for example, because they can only be made by a mix of multiple wavelengths.

Wavelengths visible to the eye also pass through the "optical window", the region of the electromagnetic spectrum which passes largely unattenuated through the Earth's atmosphere (although blue light is scattered more than red light, which is the reason the sky appears blue). The response of the human eye is defined by subjective testing (see CIE), but the atmospheric windows are defined by physical measurement. The "visible window" is so called because it overlaps the human visible response spectrum; the near infrared (NIR) windows lie just out of human response window, and the Medium Wavelength IR (MWIR) and Long Wavelength or Far Infrared (LWIR or FIR) are far beyond the human response region.

The eyes of many species perceive wavelengths different from the spectrum visible to the human eye. For example, many insects, such as bees, can see light in the ultraviolet, which is useful for finding nectar in flowers. For this reason, plant species whose life cycles are linked to insect pollination may owe their reproductive success to their appearance in ultraviolet light, rather than how colorful they appear to our eyes. Birds are also said to be able to see into the ultraviolet (300-400 nm) and oddly enough, the sex-dependent markings on some bird plumage is only visible in the ultraviolet range.

History

Two of the earliest explanations of the optical spectrum came from Isaac Newton, when he wrote his Opticks, and from Goethe, in his Theory of Colours, although earlier observations had been made by Roger Bacon who first recognized the visible spectrum in a glass of water, four centuries before Newton discovered that prisms could disassemble and reassemble white light.

Newton first used the word spectrum (Latin for "appearance" or "apparition") in print in 1671 in describing his experiments in optics. Newton observed that, when a narrow beam of sunlight strikes the face of a glass prism at an angle, some is reflected and some of the beam passes into and through the glass, emerging as different colored bands. Newton hypothesized that light was made up of "corpuscles" (particles) of different colors, and that the different colors of light moved at different speeds in transparent matter, with red light moving more quickly in glass than violet light. The result is that red light was bent (refracted) less sharply than violet light as it passed through the prism, creating a spectrum of colors.

Newton divided the spectrum into seven named colors: red, orange, yellow, green, blue, indigo, and violet (this order being popularly memorised by schoolchildren using the mnemonic ROY G. BIV). He chose seven colors out of a belief, derived from the ancient Greek sophists, that there was a connection between the colors, the musical notes, the known objects in the solar system, and the days of the week. The human eye is relatively insensitive to indigo's frequencies, and some otherwise well-sighted people cannot distinguish indigo from blue and violet. For this reason some commentators including Isaac Asimov have suggested that indigo should not be regarded as a color in its own right but merely as a shade of blue or violet.

Johann Wolfgang von Goethe contended that the continuous spectrum was a compound phenomenon. Whereas Newton narrowed the beam of light in order to isolate the phenomenon, Goethe observed that with a wider aperture, there was no spectrum - rather there were reddish-yellow edges and blue-cyan edges with white between them, and the spectrum only arose when these edges came close enough to overlap.

All light travels at the same speed in a vacuum. The speed of light within a material is lower than the speed of light in a vacuum, and the ratio of speeds is known as the refractive index of the material. Because the refractive index (and thus the speed) of a wave in a material depends on its frequency (in accordance with a dispersion relation), light consisting of multiple frequencies—for instance white light—will be dispersed at the interface between the material and air or vacuum. Both water and glass can be used to demonstrate dispersion; a glass prism yields an optical spectrum from white light, and rainbows are an ideal example of natural refraction of the visible spectrum.

Spectral colors

Color Wavelength
violet 380–450 nm
blue 450–495 nm
green 495–570 nm
yellow 570–590 nm
orange 590–620 nm
red 620–750 nm

The familiar colors of the rainbow in the spectrum include all those colors that can be produced by visible light of a single wavelength only, the pure spectral or monochromatic colors.

Although the spectrum is continuous and therefore there are no clear boundaries between one color and the next, the ranges may be used as an approximation.

Spectroscopy

The scientific study of objects based on the spectrum of the light they emit is called spectroscopy. One particularly important application of spectroscopy is in astronomy, where spectroscopy is essential for analysing the properties of distant objects. Typically, astronomical spectroscopy utilises high-dispersion diffraction gratings to observe spectra at very high spectral resolutions. Helium was first detected through an analysis of the spectrum of the Sun; chemical elements can be detected in astronomical objects by emission lines and absorption lines; the shifting of spectral lines can be used to measure the redshift or blueshift of distant or fast-moving objects. The first exoplanets to be discovered were found by analysing the doppler shift of stars at such a high resolution that variations in their radial velocity as small as a few metres per second could be detected: the presence of planets was revealed by their gravitational influence on the stars analysed, as revealed by their motion paths.

Color display spectrum

Color displays (e.g., computer monitors or televisions) mix red, green, and blue color to create colors within their respective color triangles, and so can only approximately represent spectral colors, which are in general outside any color triangle.

See also

References

Search another word or see visible spectrumon Dictionary | Thesaurus |Spanish
Copyright © 2014 Dictionary.com, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature