Added to Favorites

Popular Searches

Definitions

TITAN2D is a geoflow simulation software application, intended for geological researchers. It is distributed as free software.

TITAN2D is capable of multiprocessor runs. A Message Passing Interface (MPI) Application Programming Interface (API) allows for parallel computing on multiple processors, which effectively increases computational power, decreases computing time, and allows for the use of large data sets.

Adaptive gridding allows for the concentration of computing power on regions of special interest. Mesh refinement captures the complex flow features that occur at the leading edge of a flow, as well as locations where rapid changes in topography induce large mass and momentum fluxes. Mesh unrefinement is applied where solution values are relatively constant or small to further improve computational efficiency.

TITAN2D requires an initial volume and shape estimate for the starting material, a basal friction angle, and an internal friction angle for the simulated granular flow. The direct outputs of the program are dynamic representations of a flow's depth and momentum. Secondary or derived outputs include flow velocity, and such field-observable quantities as run-up height, deposit thickness, and inundation area.

The TITAN2D program is based upon a depth-averaged model for an incompressible Coulomb continuum, a “shallow-water” granular flow. The conservation equations for mass and momentum are solved with a Coulomb-type friction term for the interactions between the grains of the media and between the granular material and the basal surface. The resulting hyperbolic system of equations is solved using a parallel, adaptive mesh, Godunov scheme. The basic form of the depth-averaged governing equations appear as follows.

__The depth-averaged conservation of mass is:__

- $\{underbrace\{partial\; h\; over\; partial\; t\}\}\_\{$

= 0

__The depth-averaged x,y momentum balances are:__

- $\{underbrace\{partial\; overline\{hu\}\; over\; partial\; t\}\}\_\{$

- $\{underbrace\{partial\; overline\{hv\}\; over\; partial\; t\}\}\_\{$

- Geophysical Mass Flow Group (TITAN2D Distribution Site)

- Titan2D User Guide, Release 2.0.0, 2007.07.09; Geophysical Mass Flow Group, University at Buffalo (http://www.gmfg.buffalo.edu).
- A.K. Patra, A.C. Bauer, C.C. Nichita, E.B. Pitman, M.F. Sheridan, M. Bursik, B. Rupp, A. Webber, A. Stinton, L. Namikawa, and C. Renschler, Parallel Adaptive Numerical Simulation of Dry Avalanches Over Natural Terrain, Journal of Volcanology and Geophysical Research, 139 (2005) 1-21.
- E.B. Pitman, C.C. Nichita, A.K. Patra, A.C. Bauer, M.F. Sheridan, and M. Bursik, Computing Granular Avalanches and Landslides, Physics of Fluids, Vol. 15, Number 12 (December 2003).
- M.F. Sheridan, A.J. Stinton, A. Patra, E.B. Pitman, A. Bauer, C.C. Nichita, Evaluating Titan2D mass-flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington, Journal of Volcanology and Geophysical Research, 139 (2005) 89-102.
- E.B. Pitman, C. Nichita, A. Patra, A.C. Bauer, M. Bursik and A. Webber, A Numerical Study of Granular Flows on Erodible Surfaces, March 24, 2003.
- B. Rupp, M. Bursik, A. Patra, B. Pitman, A. Bauer, C. Nichita, R. Saucedo, J. Macias, 2003, Simulation of Pyroclastic Flows of Colima Volcano, Mexico, Using the TITAN2D Program, AGU/EGS/EUG Spg Meet., Geophysical Research Abstracts, 5, 12857.
- E. Munoz, D. Palacios, L. Namikawa, M. Sheridan, C. Renschler, Contrast Between Computer Simulations and Field Observation of Popocatepetl Lahars, Geophysical Research Abstracts, Vol. 6, 04599, 2004, European Geosciences Union.

Wikipedia, the free encyclopedia © 2001-2006 Wikipedia contributors (Disclaimer)

This article is licensed under the GNU Free Documentation License.

Last updated on Monday August 06, 2007 at 13:17:33 PDT (GMT -0700)

View this article at Wikipedia.org - Edit this article at Wikipedia.org - Donate to the Wikimedia Foundation

This article is licensed under the GNU Free Documentation License.

Last updated on Monday August 06, 2007 at 13:17:33 PDT (GMT -0700)

View this article at Wikipedia.org - Edit this article at Wikipedia.org - Donate to the Wikimedia Foundation

Copyright © 2014 Dictionary.com, LLC. All rights reserved.