television

television

[tel-uh-vizh-uhn]
television, transmission and reception of still or moving images by means of electrical signals, especially by means of electromagnetic radiation using the techniques of radio and by fiberoptic and coaxial cables. Television has become a major industry, especially in the industrialized nations, and a major medium of communication and source of home entertainment. Television is put to varied use in industry, e.g., for surveillance in places inaccessible to or dangerous for human beings; in science, e.g., in tissue microscopy (see microscope); and in education.

Evolution of the Scanning Process

The idea of "seeing by telegraph" engrossed many inventors after the discovery in 1873 of variation in the electrical conductivity of selenium when exposed to light. Selenium cells were used in early television devices; the results were unsatisfactory, however, chiefly because the response of selenium to light-intensity variations was not rapid enough. Moreover, until the development of the electron tube there was no way of sufficiently amplifying the weak output signals. These limitations precluded the success of a television method for which Paul Nipkow in Germany received (1884) a patent.

His system employed a selenium photocell and a scanning disk; it embodied the essential features of later successful devices. A scanning disk has a single row of holes arranged so that they spiral inward toward the center from a point near the edge. The disk revolves in front of a light-sensitive plate on which a lens forms an image; each hole passes across, or "scans," a narrow, ring-shaped sector of the image. Thus the holes trace contiguous concentric sectors, so that in one revolution of the disk the entire image is scanned. When the light-sensitive cell is connected in an electric circuit, the variations in light cause corresponding fluctuations in the electric current. The image can be reproduced by a receiver whose luminous area is scanned by a similar disk synchronized with the disk of the transmitter.

Although selenium cells proved inadequate, the development of the phototube (see photoelectric cell) made the mechanical disk-scanning method practicable. In 1926, J. L. Baird in England and C. F. Jenkins in the United States successfully demonstrated television systems using mechanical scanning disks. While research remained at producing pictures made up of 60 to 100 scanned lines, mechanical systems were competitive. These were soon superseded, however, by electronic scanning methods; a television system employing electronic scanning was patented by V. K. Zworykin in 1928. The 1930s saw the laboratory perfection of television equipment that began to reach the market in 1945 after World War II.

The modern scanning process, which is the essence of television accomplishment, operates as do the eyes in reading a page of printed matter, i.e., line by line. A complex circuit of horizontal and vertical deflection coils controls this movement and causes the electronic beam to scan the back of a mosaic of photoelectric cells in a 525-line zigzag 30 times each second. (The 525-line 30-frame-per-second system is used in the United States, Japan, and elsewhere; many other countries use similar but incompatible systems.) Because of persistence of vision only about 30 pictures need be transmitted each second to give the effect of motion. The development of interlaced scanning results in alternate lines being scanned each 1/60 sec, the remaining lines being covered in the next 1/60 sec.

Development of the Television Camera and Receiver

V. K. Zworykin's iconoscope (1923) was the first successful camera tube in wide use. Its functioning involved many fundamental principles common to all television image pickup devices. The face of the iconoscope consisted of a thin sheet of mica upon which thousands of microscopic globules of a photosensitive silver-cesium compound had been deposited. Backed with a metallic conductor, this expanse of mica became a mosaic of tiny photoelectric cells and capacitors. The differing light intensities of various points of a scene caused the cells of the mosaic to emit varying quantities of electrons, leaving the cells with positive charges proportionate to the number of electrons lost. An electron gun, or "scanner," passed its beam across the cells. As it did so, the charge was released, causing an electrical signal to appear on the back of the mosaic, which was connected externally to an amplifier. The strength of the signal was proportional to the amount of charge released. The iconoscope provided good resolution, but required very high light levels and needed constant manual correction.

The orthicon and image-orthicon camera tubes improved on the iconoscope. They used light-sensitive granules deposited on an insulator and low-velocity scanning. These could be used with lower light levels than required by the iconoscope, and did not require the constant manual manipulation. The vidicon was the first successful television camera tube to use a photoconductive surface to derive a video signal.

Solid state imaging devices were first demonstrated in the 1960s. Today's solid-state television cameras use semiconductor charge-coupled devices or CCDs. Each element in a CCD stores a charge that is determined by the illumination incident on it. At the end of the exposure interval, the charge is transferred to a storage register and the CCD is freed up for the next exposure. The charges in the storage register are transferred to the output stage serially during that time. Although almost all consumer video cameras and camcorders use CCD imagers, camera tubes are still common in professional applications.

In the television receiver, the original image is reconstructed essentially by reversing the operation of the video camera. The final image is typically displayed on the face of a cathode-ray tube, where an electron beam scans the fluorescent face, called the "screen," line for line with the pickup scanning. The fluorescent deposit on the tube's inside face glows when hit by the electrons, and the visual image is reproduced. Liquid crystal displays have also been used, mainly on small, portable sets; they are also finding increasing use as light valves on large-screen projectors. Although LCD technology is advancing rapidly, video projectors that use electron tubes can still produce better pictures. Other devices in the receiver extract the crucial synchronization information from the signal and demodulate (separate the information signal from the carrier wave) it.

Development of Color Television

Several systems of color television have been developed. In the first color system approved by the Federal Communications Commission (FCC), a motor-driven disk with segments in three primary colors—red, blue, and green—rotated behind the camera lens, filtering the light from the subject so that the colors could pass through in succession. The receiving unit of this system formed monochrome (black-and-white) images through the usual cathode-ray tube, but a color wheel, identical with that affixed to the camera and synchronized with it, transformed the images back to their original appearance. This method is said to be "field-sequential" because the monochrome image is "painted" first in one color, then another, and finally in the third, in rapid enough succession so that the individual colors are blended by the retentive capacities of the eye, giving the viewer the impression of a full colored image. This system, developed by the Columbia Broadcasting System (CBS), was established in 1950 as standard for the United States by the FCC. However, it was not "compatible," i.e., from the same signal a good picture could not be obtained on standard black-and-white sets, so it found scant public acceptance.

Another system, a simultaneous compatible system, was developed by the Radio Corporation of America (RCA). In 1953 the FCC reversed its 1950 ruling and revised the standards for acceptable color television systems. The RCA system met the new standards (the CBS system did not) and was well received by the public. This system is based on an "element-sequential" system. Light from the subject is broken up into its three color components, which are simultaneously scanned by three pickups. However, the signals corresponding to the red, green, and blue portions of the scanned elements are combined electronically so that the required 4.1-MHz bandwidth can be used. In the receiver the three color signals are separated for display. The elements, or dots, on the picture tube screen are each subdivided into areas of red, green, and blue phosphor. Beams from three electron guns, modulated by the three color signals, scan the elements together in such a way that the beam from the gun using a given color signal strikes the phosphor of the same color. Provision is made electronically for forming proper gray tones in black-and-white receivers. The FCC allowed stereo audio for television in 1984.

Broadcast, Cable, and Satellite Television Transmission

Television programs may be transmitted either "live" or from a recording. The principle means of recording television programs for future use is videotape recording. Videotape recording is similar to conventional tape recording (see tape recorder) except that, because of the wide frequency range—4.2 megahertz (MHz)—occupied by a video signal, the effective speed at which the tape passes the head is kept very high. The sound is recorded along with the video signal on the same tape.

When a television program is broadcast, the varying electrical signals are then amplified and used to modulate a carrier wave (see modulation); the modulated carrier is usually fed to an antenna, where it is converted to electromagnetic waves and broadcast over a large region. The waves are sensed by antennas connected to television receivers. The range of waves suitable for radio and television transmission is divided into channels, which are assigned to broadcast companies or services. In the United States the Federal Communications Commission (FCC) has assigned 12 television channels between 54 and 216 MHz in the very-high-frequency (VHF) range and 56 channels between 470 and 806 MHz in the ultra-high-frequency (UHF) range (see radio frequency).

Most television viewers in the United States no longer receive signals by using antennas; instead, they receive programming via cable television. Cable delivery of television started as a way to improve reception. A single, well-placed community antenna received the broadcast signals and distributed them over coaxial or fiber-optic cables to areas that otherwise would not be able to receive them. Today, cable television is popular because of the wide variety of programming it can deliver. Many systems now provide more than 100 channels of programming. Typically, a cable television company receives signals relayed from a communications satellite and sends those signals to its subscribers. The first transatlantic television broadcast was accomplished by such a satellite, called Telstar, on July 10, 1962. Some television viewers use small satellite dishes to receive signals directly from satellites. Most satellite-delivered signals are scrambled and require a special decoder to receive them clearly.

See also broadcasting.

Television Technology Innovations

The next great advance in television will be the adoption of a high-definition television (HDTV) system. Non-experimental analog HDTV broadcasting began in Japan in 1991. In 1994 the FCC approved a U.S. standard for an all-digital system, to be used by all commercial broadcast stations by mid-2002. Although it was hoped that the transition to digital broadcasting would be largely completed by 2006, less than a third of all stations had begun transmitting digital signals by the mid-2002 deadline. In 2005 the U.S. government mandated an end to digital broadcasting in Feb., 2009 (changed to June, 2009, shortly before the deadline in 2009), but by Apr., 2008, only 80% of those stations required to end analog broadcasting had begun digital broadcasting.

The most noticeable difference between the current system and the HDTV system is the aspect ratio of the picture. While the ratio of the width of a current TV picture to its height is 4:3, the HDTV system has a ratio of 16:9, about the same as the screen used in a typical motion-picture theater. HDTV also provides higher picture resolution and high quality audio. Each frame of video consists of 720 or 1,125 horizontally scanned lines instead of the current 525. Furthermore, the lines are scanned sequentially, not interlaced as they are now.

The wide availability of television has raised concerns about the amount of time children spend watching TV, as well as the increasingly violent and graphic sexual content of TV programming. Starting in 1999 the FCC required TV set manufacturers to install "V-Chip" technology that allows parents to block the viewing of specific programs; that same year the television industry adopted a voluntary ratings system to indicate the content of each program.

Various interactive television systems have been tested or proposed. An interactive system could be used for instant public-opinion polls or for home shopping. Many cable television systems use an interactive system for instant ordering of "pay-per-view" programming. Others systems poll their subscribers' equipment to compile information on program preferences. Several competing commercial systems have connected televisions to the Internet.

Bibliography

See D. G. Fink and D. M. Lutyens, The Physics of Television (1960); M. S. Kiver, Television Simplified (7th ed. 1973); R. Armes, On Video (1988); K. B. Benson and J. C. Whitaker, Television and Audio Handbook (1990); K. B. Benson, Television Engineering Handbook (1992); D. E. Fisher and M. J. Fisher, Tube (1996).

Broadcast serial drama, characterized by a permanent cast of actors, a continuing story, tangled interpersonal situations, and a melodramatic or sentimental style. Its name derived from the soap and detergent manufacturers who originally often sponsored such programs on radio. Soap operas began in the early 1930s as 15-minute radio episodes and continued on television from the early 1950s as 30-minute and later hour-long episodes. Usually broadcast during the day and aimed at housewives, they initially focused on middle-class family life, but by the 1970s their content had expanded to include a wider variety of characters and situations and a greater degree of sexual explicitness. In the 1980s similar series began to be aired in prime-time evening hours (e.g., Dallas and Dynasty). Seealso Carlton E. Morse; Irna Phillips.

Learn more about soap opera with a free trial on Britannica.com.

Electronic system for transmitting still or moving images and sound to receivers that project a view of the images on a picture tube or screen and recreate the sound. Early versions (1900–20) of the cathode-ray (picture) tube, methods of amplifying an electronic signal, and theoretical formulation of the electronic-scanning principle later became the basis of modern TV. RCA demonstrated the first all-electronic TV in 1932. Cable TV systems (introduced in the late 1940s), colour TV (in the 1950s), and recording or playback machines (in the 1980s; see VCR) followed. Digital high-definition (HDTV) systems (1990s) provide sharper, clearer pictures and sound with little interference or other imperfections and have the potential to merge TV functions with those of computers.

Learn more about television (TV) with a free trial on Britannica.com.

System that distributes television signals by means of coaxial or fibre-optic cables. Cable television systems originated in the U.S. in the late 1940s to improve reception in remote and hilly areas, where broadcast signals were weak. In the 1960s they were introduced in large metropolitan areas where reception is sometimes degraded by reflection of signals from tall buildings. Since the mid-1970s there has been a proliferation of cable systems that offer special services and which generally charge a monthly fee. Besides providing high-quality signals, some systems can deliver hundreds of channels. Another feature increasingly offered by cable operators is two-way, interactive communication by which viewers can, for example, participate in public-opinion polls as well as connect to the Internet. Cable operators are also involved in the development of video compression, digital transmission, and high-definition television.

Learn more about cable television with a free trial on Britannica.com.

Television (TV) is a widely used telecommunication medium for sending (broadcasting) and receiving moving images, either monochromatic ("black and white") or color, usually accompanied by sound. "Television" may also refer specifically to a television set, television programming or television transmission. The word is derived from mixed Latin and Greek roots, meaning "far sight": Greek tele (τῆλε), far, and Latin visio, sight (from video, vis- to see, or to view in the first person).

Commercially available since the late 1930s, the television set has become a common communications receiver in homes, businesses and institutions, particularly as a source of entertainment and news. Since the 1970s, recordings on video cassettes, and later, digital media such as DVDs, have resulted in the television frequently being used for viewing recorded as well as broadcast material.

A standard television set comprises multiple internal electronic circuits, including those for tuning and decoding broadcast signals. A display device which lacks these internal circuits is therefore properly called a monitor, rather than a television. A television set may be designed to handle other than traditional broadcast or recorded signals and formats, such as closed-circuit television (CCTV), digital television (DTV) and high-definition television (HDTV).

History

In its early stages of development, television included only those devices employing a combination of optical, mechanical and electronic technologies to capture, transmit and display a visual image. By the late 1920s, however, those employing only optical and electronic technologies were being explored. All modern television systems rely on the latter, however the knowledge gained from the work on mechanical-dependent systems was crucial in the development of fully electronic television.

In 1884 Paul Gottlieb Nipkow, a 20-year old university student in Germany patented the first electromechanical television system which employed a scanning disk, a spinning disk with a series of holes spiraling toward the center, for "rasterization", the process of converting a visual image into a stream of electrical pulses. The holes were spaced at equal angular intervals such that in a single rotation the disk would allow light to pass through each hole and onto a light-sensitive selenium sensor which produced the electrical pulses. As an image was focused on the rotating disk, each hole captured a horizontal "slice" of the whole image.

Nipkow's design would not be practical until advances in amplifier tube technology became available in 1907. Even then the device was only useful for transmitting still halftone images - those represented by equally spaced dots of varying size - over telegraph or telephone lines. Later designs would use a rotating mirror-drum scanner to capture the image and a cathode ray tube (CRT) as a display device, but moving images were still not possible, due to the poor sensitivity of the selenium sensors.

Scottish inventor John Logie Baird demonstrated the transmission of moving silhouette images in London in 1925, and of moving, monochromatic images in 1926. Baird's scanning disk produced an image of 30 lines resolution, barely enough to discern a human face, from a double spiral of lenses.

By 1927, Russian inventor Léon Theremin developed a mirror drum-based television system which used interlacing to achieve an image resolution of 100 lines.

Also in 1927, Herbert E. Ives of Bell Labs transmitted moving images from a 50-aperture disk producing 16 frames per minute over a cable from Washington, DC to New York City, and via radio from Whippany, New Jersey. Ives used viewing screens as large as 24 by 30 inches (60 by 75 centimeter). His subjects included Secretary of Commerce Herbert Hoover.

In 1928, Philo Farnsworth made the world's first working television system with electronic scanning of both the pickup and display devices, which he first demonstrated to news media on 1928-09-01, televising a motion picture film.

Geographical usage

Content

Programming

Getting TV programming shown to the public can happen in many different ways. After production the next step is to market and deliver the product to whatever markets are open to using it. This typically happens on two levels:

  1. Original Run or First Run – a producer creates a program of one or multiple episodes and shows it on a station or network which has either paid for the production itself or to which a license has been granted by the producers to do the same.
  2. Syndication – this is the terminology rather broadly used to describe secondary programming usages (beyond original run). It includes secondary runs in the country of first issue, but also international usage which may or may not be managed by the originating producer. In many cases other companies, TV stations or individuals are engaged to do the syndication work, in other words to sell the product into the markets they are allowed to sell into by contract from the copyright holders, in most cases the producers.

First run programming is increasing on subscription services outside the U.S., but few domestically produced programs are syndicated on domestic FTA elsewhere. This practice is increasing however, generally on digital-only FTA channels, or with subscriber-only first run material appearing on FTA.

Unlike the U.S., repeat FTA screenings of a FTA network program almost only occur on that network. Also, Affiliates rarely buy or produce non-network programming that is not centred around local events.

Funding

Around the globe, broadcast television is financed by either government, advertising, licensing (a form of tax), subscription or any combination of these. To protect revenues, subscription TV channels are usually encrypted to ensure that only subscription payers receive the decryption codes to see the signal. Non-encrypted channels are known as Free to Air or FTA.

Advertising

Advertising attempts to influence people's behaviour and beliefs and television is therefore a powerful and attractive medium for advertisers to use. TV stations sell air time to advertisers in order to fund their programming.

United States

Since inception in the U.S. in 1940, TV commercials have become one of the most effective, persuasive, and popular method of selling products of many sorts, especially consumer goods. U.S. advertising rates are determined primarily by Nielsen Ratings. The time of the day and popularity of the channel determine how much a television commercial can cost. For example, the highly popular American Idol can cost approximately $750,000 for a thirty second block of commercial time; while the same amount of time for the World Cup and the Super Bowl can cost several million dollars.

In recent years, the paid program or infomercial has become common, usually in lengths of 30 minutes or one hour. Some drug companies and other businesses have even created "news" items for broadcast, known in the industry as video news releases, paying program directors to use them.

Some TV programs also weave advertisements into their shows, a practice begun in film and known as product placement. For example, a character could be drinking a certain kind of soda, going to a particular chain restaurant, or driving a certain make of car. (This is sometimes very subtle, where shows have vehicles provided by manufacturers for low cost, rather than wrangling them.) Sometimes a specific brand or trade mark, or music from a certain artist or group, is used. (This excludes guest appearances by artists, who perform on the show.)

United Kingdom

The TV regulator oversees TV advertising in the United Kingdom. Its restrictions have applied since the early days of commercially funded TV. Despite this, an early TV mogul, Lew Grade, likened the broadcasting licence as a being a "licence to print money". Restrictions mean that the big three national commercial TV channels, ITV, Channel 4, and Five can show an average of only seven minutes of advertising per hour (eight minutes in the peak period). Other broadcasters must average no more than nine minutes (twelve in the peak). This means that many imported TV shows from the US have un-natural breaks where the UK company has edited out the breaks intended for US advertising. Advertisements must not be inserted in the course of any broadcast of a news or current affairs program of less than half an hour scheduled duration, or in a documentary of less than half an hour scheduled duration, or in a program for children of less than half an hour scheduled duration. Nor may advertisements be carried in a program designed and broadcast for reception in schools or in any religious service or other devotional program, or during a formal Royal ceremony or occasion. There also must be clear demarcations in time between the programs and the advertisements.

The BBC, being strictly non-commercial is not allowed to show advertisements on television in the UK, although it has many advertising-funded channels abroad. The majority of its budget comes from TV licencing (see below) and the sale of content to other broadcasters.

Taxation or TV License

Television services in some countries may be funded by a television licence, a form of taxation which means advertising plays a lesser role or no role at all. For example, some channels may carry no advertising at all and some very little.

The BBC carries no advertising on its UK channels and is funded by an annual licence paid by all households owning a television. This licence fee is set by government, but the BBC is not answerable to or controlled by government and is therefore genuinely independent.

The two main BBC TV channels are watched by almost 90 percent of the population each week and overall have 27 per cent share of total viewing. This in spite of the fact that 85% of homes are multichannel, with 42% of these having access to 200 free to air channels via satellite and another 43% having access to 30 or more channels via Freeview. The licence that funds the seven advertising-free BBC TV channels costs less than £136 a year (about US$270) irrespective of the number of TV sets owned. When the same sporting event has been presented on both BBC and commercial channels, the BBC always attracts the lion's share of the audience, indicating viewers prefer to watch TV uninterrupted by advertising.

The Australian Broadcasting Corporation (ABC) carries no advertising (except for the ABC shop) as it is banned under law ABC Act 1983 The ABC receives its funding from the Australian Government every three years. In the 2006/07 Federal Budget the ABC received Au$822.67 Million this covers most of the ABC funding commitments and as with the BBC also funds radio channels, transmitters and the ABC web sites. The ABC also receives funds from its many ABC Shops in Australia.

Subscription

Some TV channels are partly funded from subscriptions and therefore the signals are encrypted during broadcast to ensure that only paying subscribers have access to the decryption codes. Most subscription services are also funded by advertising.

Television genres

Television genres include a broad range of programming types that entertain, inform, and educate viewers. The most expensive entertainment genres to produce are usually drama and dramatic miniseries. However, other genres, such as historical Western genres, may also have high production costs.

Popular entertainment genres include action-oriented shows such as police, crime, detective dramas, horror or thriller shows. As well, there are also other variants of the drama genre, such as medical dramas and daytime soap operas. Science fiction shows can fall into either the drama or action category, depending on whether they emphasize philosophical questions or high adventure. Comedy is a popular genre which includes situation comedy (sitcom) and animated shows for the adult demographic such as South Park.

The least expensive forms of entertainment programming are game shows, talk shows, variety shows, and reality TV. Game shows show contestants answering questions and solving puzzles to win prizes. Talk shows feature interviews with film, television and music celebrities and public figures. Variety shows feature a range of musical performers and other entertainers such as comedians and magicians introduced by a host or Master of Ceremonies. There is some crossover between some talk shows and variety shows, because leading talk shows often feature performances by bands, singers, comedians, and other performers in between the interview segments. Reality TV shows "regular" people (i.e., not actors) who are facing unusual challenges or experiences, ranging from arrest by police officers (COPS) to weight loss (The Biggest Loser). A variant version of reality shows depicts celebrities doing mundane activities such as going about their everyday life (The Osbournes) or doing manual labour (Simple Life).

Social aspects

Television has played a pivotal role in the socialization of the 20th and 21st centuries. There are many social aspects of television that can be addressed, including:

Environmental aspects

With high lead content in CRTs, and the rapid diffusion of new, flat-panel display technologies, some of which (LCDs) use lamps containing mercury, there is growing concern about electronic waste from discarded televisions. Related occupational health concerns exist, as well, for disassemblers removing copper wiring and other materials from CRTs. Further environmental concerns related to television design and use relate to the devices' increasing electrical energy requirements.

In numismatics

Television has had such an impact in today's life, that it has been the main motif for numerous collectors' coins and medals. One of the most recent ones is the Austrian 50 years of Television commemorative coin minted in March 9, 2005. The obverse of the coin shows a "test pattern", while the reverse shows several milestones in the history of television.

References

See also

Further reading

  • Albert Abramson, The History of Television, 1942 to 2000, Jefferson, NC, and London, McFarland, 2003, ISBN 0786412208.
  • Pierre Bourdieu, On Television, The New Press, 2001.
  • Tim Brooks and Earle March, The Complete Guide to Prime Time Network and Cable TV Shows, 8th ed., Ballantine, 2002.
  • Jacques Derrida and Bernard Stiegler, Echographies of Television, Polity Press, 2002.
  • David E. Fisher and Marshall J. Fisher, Tube: the Invention of Television, Counterpoint, Washington, DC, 1996, ISBN 1887178171.
  • Steven Johnson, Everything Bad is Good for You: How Today's Popular Culture Is Actually Making Us Smarter, New York, Riverhead (Penguin), 2005, 2006, ISBN 1594481946.
  • Jerry Mander, Four Arguments for the Elimination of Television, Perennial, 1978.
  • Jerry Mander, In the Absence of the Sacred, Sierra Club Books, 1992, ISBN 0871565099.
  • Neil Postman, Amusing Ourselves to Death: Public Discourse in the Age of Show Business, New York, Penguin US, 1985, ISBN 0670804541.
  • Evan I. Schwartz, The Last Lone Inventor: A Tale of Genius, Deceit, and the Birth of Television, New York, Harper Paperbacks, 2003, ISBN 0060935596.
  • Beretta E. Smith-Shomade, Shaded Lives: African-American Women and Television, Rutgers University Press, 2002.
  • Alan Taylor, We, the Media: Pedagogic Intrusions into US Mainstream Film and Television News Broadcasting Rhetoric, Peter Lang, 2005, ISBN 3631518528.

External links

Search another word or see televisionon Dictionary | Thesaurus |Spanish
Copyright © 2014 Dictionary.com, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature
FAVORITES
RECENT

;