Added to Favorites

Related Searches

Definitions

Nearby Words

In mathematics, a self-similar object is exactly or approximately similar to a part of itself (i.e. the whole has the same shape as one or more of the parts). Many objects in the real world, such as coastlines, are statistically self-similar: parts of them show the same statistical properties at many scales. Self-similarity is a typical property of fractals.

Scale invariance is an exact form of self-similarity where at any magnification there is a smaller piece of the object that is similar to the whole. For instance, a side of the Koch snowflake is both symmetrical and scale-invariant; it can be continually magnified 3x without changing shape.

- $X=cup\_\{sin\; S\}\; f\_s(X)$

If $Xsubset\; Y$, we call X self-similar if it is the only non-empty subset of Y such that the equation above holds for $\{\; f\_s\; \}\_\{sin\; S\}$. We call

- $mathfrak\{L\}=(X,S,\{\; f\_s\; \}\_\{sin\; S\})$

a self-similar structure. The homeomorphisms may be iterated, resulting in an iterated function system. The composition of functions creates the algebraic structure of a monoid. When the set S has only two elements, the monoid is known as the dyadic monoid. The dyadic monoid can be visualized as an infinite binary tree; more generally, if the set S has p elements, then the monoid may be represented as a p-adic tree.

The automorphisms of the dyadic monoid is the modular group; the automorphisms can be pictured as hyperbolic rotations of the binary tree.

The Mandelbrot set is also self-similar around Misiurewicz points.

Self-similarity has important consequences for the design of computer networks, as typical network traffic has self-similar properties. For example, in teletraffic engineering, packet switched data traffic patterns seem to be statistically self-similar. This property means that simple models using a Poisson distribution are inaccurate, and networks designed without taking self-similarity into account are likely to function in unexpected ways.

Similarly, stock market movements are described as displaying self-affinity, i.e. they appear self-similar when transformed via an appropriate affine transformation for the level of detail being shown.

- "Copperplate Chevrons" — a self-similar fractal zoom movie

Wikipedia, the free encyclopedia © 2001-2006 Wikipedia contributors (Disclaimer)

This article is licensed under the GNU Free Documentation License.

Last updated on Friday October 03, 2008 at 10:24:25 PDT (GMT -0700)

View this article at Wikipedia.org - Edit this article at Wikipedia.org - Donate to the Wikimedia Foundation

This article is licensed under the GNU Free Documentation License.

Last updated on Friday October 03, 2008 at 10:24:25 PDT (GMT -0700)

View this article at Wikipedia.org - Edit this article at Wikipedia.org - Donate to the Wikimedia Foundation

Copyright © 2014 Dictionary.com, LLC. All rights reserved.