Definitions

semiautomated

Word processor

A word processor (more formally known as document preparation system) is a computer application used for the production (including composition, editing, formatting, and possibly printing) of any sort of printable material.

Word processor may also refer to an obsolete type of stand-alone office machine, popular in the 1970s and 80s, combining the keyboard text-entry and printing functions of an electric typewriter with a dedicated computer for the editing of text. Although features and design varied between manufacturers and models, with new features added as technology advanced, word processors for several years usually featured a monochrome display and the ability to save documents on memory cards or diskettes. Later models introduced innovations such as spell-checking programs, increased formatting options, and dot-matrix printing. As the more versatile combination of a personal computer and separate printer became commonplace, the word processor disappeared.

Word processors are descended from early text formatting tools (sometimes called text justification tools, from their only real capability). Word processing was one of the earliest applications for the personal computer in office productivity.

Although early word processors used tag-based markup for document formatting, most modern word processors take advantage of a graphical user interface. Most are powerful systems consisting of one or more programs that can produce any arbitrary combination of images, graphics and text, the latter handled with type-setting capability.

Microsoft Word is the most widely used computer word processing system; Microsoft estimates over five hundred million people use the Office suite, which includes Word. There are also many other commercial word processing applications, such as WordPerfect, which dominated the market from the mid-1980s to early-1990s, particularly for machines running Microsoft's MS-DOS operating system. Open-source applications such as OpenOffice.org Writer and KWord are rapidly gaining in popularity. Online word processors such as Google Docs are a relatively new category.

Characteristics

Word processing typically refers to text manipulation functions such as automatic generation of:

  • batch mailings using a form letter template and an address database (also called mail merging);
  • indices of keywords and their page numbers;
  • tables of contents with section titles and their page numbers;
  • tables of figures with caption titles and their page numbers;
  • cross-referencing with section or page numbers;
  • footnote numbering;
  • new versions of a document using variables (e.g. model numbers, product names, etc.)

Other word processing functions include "spell checking" (actually checks against wordlists), "grammar checking" (checks for what seem to be simple grammar errors), and a "thesaurus" function (finds words with similar or opposite meanings). In most languages grammar is very complex, so grammar checkers tend to be unreliable and also require a large amount of RAM. Other common features include collaborative editing, comments and annotations, support for images and diagrams and internal cross-referencing.

Word processors can be distinguished from several other, related forms of software:

Text editors (modern examples of which include Notepad, Emacs and vi), were the precursors of word processors. While offering facilities for composing and editing text, they do not format documents. This can be done by batch document processing systems, starting with TJ-2 and RUNOFF and still available in such systems as LaTeX (as well as programs that implement the paged-media extensions to HTML and CSS). Text editors are now used mainly by programmers, website designers, and computer system administrators. They are also useful when fast startup times, small file sizes and portability are preferred over formatting.

Later desktop publishing programs were specifically designed to allow elaborate layout for publication, but often offered only limited support for editing. Typically, desktop publishing programs allowed users to import text that they have written using a text editor or word processor.

Almost all word processors enable users to employ styles, which are used to automate consistent formatting of text body, titles, subtitles, highlighted text, and so on.

Styles are the key to managing the formatting of large documents, since changing a style automatically changes all text that the style has been applied to. Even in shorter documents styles can save a lot of time while formatting. However, most help files refer to styles as an 'advanced feature' of the word processor, which often discourages users from using styles regularly.

Document statistics

Most current word processors can calculate various statistics pertaining to a document. These usually include:

Errors are common; for instance, a dash surrounded by spaces — like either of these — may be counted as a word.

Typical usage

Word processors have a variety of uses and applications within the business world, home, and education.

Business

Within the business world, word processors are extremely useful tools. Typical uses include:

  • memos
  • letters and letterhead
  • legal copies
  • reference documents

Businesses tend to have their own format and style for any of these. Thus, versatile word processors with layout editing and similar capabilities find widespread use in most businesses.

Education

Many schools have begun to teach typing and word processing to their students, starting as early as elementary school. Typically these skills are developed throughout secondary school in preparation for the business world. Undergraduate students typically spend many hours writing essays. Graduate and doctoral students continue this trend, as well as creating works for research and publication.

Home

While many homes have word processors on their computers, word processing in the home tends to be educational or business related, dealing with assignments or work being completed at home. Some use word processors for letter writing, résumé creation, and card creation. However, many of these home publishing processes have been taken over by desktop publishing programs such as Adobe Pagemaker, which is better suited for these types of documents.

History

The term word processing was invented by IBM in the late 1960s. By 1971 it was recognized by the New York Times as a "buzz word". A 1971 Times article referred to "the brave new world of Word Processing or W/P. That's International Business Machines talk... I.B.M. introduced W/P about five years ago for its Magnetic Selectric typewriter and other electronic razzle-dazzle."

IBM defined the term in a broad and vague way as "the combination of people, procedures, and equipment which transforms ideas into printed communications," and originally used it to include dictating machines and ordinary, manually-operated Selectric typewriters. By the early seventies, however, the term was generally understood to mean semiautomated typewriters affording at least some form of electronic editing and correction, and the ability to produce perfect "originals." Thus, the Times headlined a 1974 Xerox product as a "speedier electronic typewriter", but went on to describe the product, which had no screen, as "a word processor rather than strictly a typewriter, in that it stores copy on magnetic tape or magnetic cards for retyping, corrections, and subsequent printout.

Electromechanical paper-tape-based equipment such as the Friden Flexowriter had long been available; the Flexowriter allowed for operations such as repetitive typing of form letters (with a pause for the operator to manually type in the variable information), and when equipped with an auxiliary reader, could perform an early version of "mail merge". Circa 1970 it began to be feasible to apply electronic computers to office automation tasks. IBM's Mag Tape Selectric Typewriter (MTST) and later Mag Card Selectric (MCST) were early devices of this kind, which allowed editing, simple revision, and repetitive typing, with a one-line display for editing single lines.

The New York Times, reporting on a 1971 business equipment trade show, said

The "buzz word" for this year's show was "word processing," or the use of electronic equipment, such as typewriters; procedures and trained personnel to maximize office efficiency. At the IBM exhibition a girl [sic] typed on an electronic typewriter. The copy was received on a magnetic tape cassette which accepted corrections, deletions, and additions and then produced a perfect letter for the boss's signature....

In 1971, a third of all working women in the United States were secretaries, and they could see that word processing would have an impact on their careers. Some manufacturers, according to a Times article, urged that "the concept of 'word processing' could be the answer to Women's Lib advocates' prayers. Word processing will replace the 'traditional' secretary and give women new administrative roles in business and industry."

The 1970s word processing concept did not refer merely to equipment, but, explicitly, to the use of equipment for "breaking down secretarial labor into distinct components, with some staff members handling typing exclusively while others supply administrative support. A typical operation would leave most executives without private secretaries. Instead one secretary would perform various administrative tasks for three or more secretaries. A 1971 article said that "Some [secretaries] see W/P as a career ladder into management; others see it as a dead-end into the automated ghetto; others predict it will lead straight to the picket line." The National Secretaries Association, which defined secretaries as people who "can assume responsibility without direct supervision," feared that W/P would transform secretaries into "space-age typing pools." The article considered only the organizational changes resulting from secretaries operating word processors rather than typewriters; the possibility that word processors might result in managers creating documents without the intervention of secretaries was not considered—not surprising in an era when few but secretaries possessed keyboarding skills.

In the early 1970s, computer scientist Harold Koplow was hired by Wang Laboratories to program calculators. One of his programs permitted a Wang calculator to interface with an IBM Selectric typewriter, which was at the time used to calculate and print the paperwork for auto sales.

In 1974, Koplow's interface program was developed into the Wang 1200 Word Processor, an IBM Selectric-based text-storage device. The operator of this machine typed text on a conventional IBM Selectric; when the Return key was pressed, the line of text was stored on a cassette tape. One cassette held roughly 20 pages of text, and could be "played back" (i.e., the text retrieved) by printing the contents on continuous-form paper in the 1200 typewriter's "print" mode. The stored text could also be edited, using keys on a simple, six-key array. Basic editing functions included Insert, Delete, Skip (character, line), and so on.

The labor and cost savings of this device were immediate, and remarkable: pages of text no longer had to be retyped to correct simple errors, and projects could be worked on, stored, and then retrieved for use later on. The rudimentary Wang 1200 machine was the precursor of the Wang Office Information System (OIS), introduced in 1976, whose CRT-based system was a major breakthrough in word processing technology. It displayed text on a CRT screen, and incorporated virtually every fundamental characteristic of word processors as we know them today. It was a true office machine, affordable by organizations such as medium-sized law firms, and easily learned and operated by secretarial staff.

The Wang was not the first CRT-based machine nor were all of its innovations unique to Wang. In the early 1970s Linolex, Lexitron and Vydec introduced pioneering word-processing systems with CRT display editing. A Canadian electronics company, Automatic Electronic Systems, had introduced a product with similarities to Wang's product in 1973, but went into bankruptcy a year later. Its first office product, the AES-90, combined for the first time a CRT-screen, a floppy-disk and a microprocessor, that is, the very same winning combination that would be used by IBM for its PC seven years later. The AES-90 software was able to handle French and English typing from the start. The first eight units were delivered to the office of the then Prime Minister, Pierre-Elliot Trudeau, in February 1974. In 1976, refinanced by the Canada Development Corporation, it returned to operation as AES Data, and went on to successfully market its brand of word processors worldwide until its demise in the mid-1980s. Despite these predecessors, Wang's product was a standout, and by 1978 it had sold more of these systems than any other vendor.

The phrase "word processor" rapidly came to refer to CRT-based machines similar to Wang's. Numerous machines of this kind emerged, typically marketed by traditional office-equipment companies such as IBM, Lanier (marketing AES Data machines, re-badged), CPT, and NBI. All were specialized, dedicated, proprietary systems, with prices in the $10,000 ballpark. Cheap general-purpose computers were still the domain of hobbyists.

Some of the earliest CRT-based machines used cassette tapes for removable-memory storage until floppy diskettes became available for this purpose - first the 8-inch floppy, then the 5-1/4-inch (drives by Shugart Associates and diskettes by Dysan).

Printing of documents was initially accomplished using IBM Selectric typewriters modified for ASCII-character input. These were later replaced by application-specific daisy wheel printers (Diablo, which became a Xerox company, and Qume -- both now defunct.) For quick "draft" printing, dot-matrix line printers were optional alternatives with some word processors.

With the rise of personal computers, and in particular the IBM PC and PC compatibles, software-based word processors running on general-purpose commodity hardware gradually displaced dedicated word processors, and the term came to refer to software rather than hardware. Some programs were modeled after particular dedicated WP hardware. MultiMate, for example, was written for an insurance company that had hundreds of typists using Wang systems, and spread from there to other Wang customers. To adapt to the smaller PC keyboard, MultiMate used stick-on labels and a large plastic clip-on template to remind users of its dozens of Wang-like functions, using the shift, alt and ctrl keys with the 10 IBM function keys and many of the alphabet keys.

Other early word-processing software required users to memorize semi-mnemonic key combinations rather than pressing keys labelled "copy" or "bold." (In fact, many early PCs lacked cursor keys; WordStar famously used the E-S-D-X-centered "diamond" for cursor navigation, and modern vi-like editors encourage use of hjkl for navigation.) However, the price differences between dedicated word processors and general-purpose PCs, and the value added to the latter by software such as VisiCalc, were so compelling that personal computers and word processing software soon became serious competition for the dedicated machines. Word Perfect, XyWrite, Microsoft Word and dozens of other word processing software brands competed in the 1980s. Development of higher-resolution monitors allowed them to provide limited WYSIWYG - What You See Is What You Get, to the extent that typographical features like bold and italics, indentation, justification and margins were approximated on screen.

The mid-to-late 1980s saw the spread of laser printers, a "typographic" approach to word processing, and of true WYSIWYG bitmap displays with multiple fonts (pioneered by the Xerox Alto computer and Bravo word processing program), Postscript, and graphical user interfaces (another Xerox PARC innovation, with the Gypsy word processor which was commercialised in the Xerox Star product range). Standalone word processors adapted by getting smaller and replacing their CRTs with small character-oriented LCD displays. Some models also had computer-like features such as floppy disk drives and the ability to output to an external printer. They also got a name change, now being called "electronic typewriters" and typically occupying a lower end of the market, selling for under $200 USD.

MacWrite, Microsoft Word and other word processing programs for the bit-mapped Apple Macintosh screen, introduced in 1984, were probably the first true WYSIWYG word processors to become known to many people until the introduction of Microsoft Windows. Dedicated word processors eventually became museum pieces.

See also

References

External links

Search another word or see semiautomatedon Dictionary | Thesaurus |Spanish
Copyright © 2014 Dictionary.com, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature
FAVORITES
RECENT

;