quantum bit

Timeline of quantum computing

Timeline of quantum computers





Since the NMR experiments cannot prepare pure quantum states and exhibit no quantum entanglement during computation, concerns have arisen about their quantum nature. In particular, it has been proved that the presence of entanglement is a necessary condition for quantum computation.


  • University of Illinois at Urbana-Champaign scientists demonstrate quantum entanglement of multiple characteristics, potentially allowing multiple qubits per particle.
  • Two teams of physicists have measured the capacitance of a Josephson junction for the first time. The methods could be used to measure the state of quantum bits in a quantum computer without disturbing the state.
  • In December, the first quantum byte, or qubyte, is announced to have been created by scientists at The Institute of Quantum Optics and Quantum Information at the University of Innsbruck in Austria, with the formal paper published in the December 1st issue of Nature.
  • Harvard University and Georgia Institute of Technology researchers succeeded in transferring quantum information between "quantum memories" – from atoms to photons and back again.


  • Materials Science Department of Oxford University, cage a qubit in a buckyball (a Buckminster fullerene particle), and demonstrated quantum "bang-bang" error correction.
  • Researchers from the University of Illinois at Urbana-Champaign use the Zeno Effect, repeatedly measuring the properties of a photon to gradually change it without actually allowing the photon to reach the program, to search a database without actually "running" the quantum computer.
  • Vlatko Vedral of the University of Leeds and colleagues at the universities of Porto and Vienna found that the photons in ordinary laser light can be quantum mechanically entangled with the vibrations of a macroscopic mirror.
  • Professor Samuel L.Braunstein at the University of York along with the University of Tokyo and the Japan Science and Technology Agency gave the first experimental demonstration of quantum telecloning.
  • Professors at the University of Sheffield develop a means to efficiently produce and manipulate individual photons at high efficiency at room temperature.
  • New error checking method theorized for Josephson junction computers.
  • First 12 qubit quantum computer benchmarked.
  • Two dimensional ion trap developed for quantum computing.
  • Seven atoms placed in stable line, a step on the way to constructing a quantum gate, at the University of Bonn.
  • A team at Delft University of Technology in the Netherlands created a device that can manipulate the "up" or "down" spin-states of electrons on quantum dots.
  • University of Arkansas develops quantum dot molecules.
  • Spinning new theory on particle spin brings science closer to quantum computing.
  • University of Copenhagen develops quantum teleportation between photons and atoms.
  • University of Southern California develops new quantum error correction method.
  • University of Camerino scientists develop theory of macroscopic object entanglement, which has implications for the development of quantum repeaters.
  • Scientists at Illinois at Urbana-Champaign find that quantum coherence is possible in incommensurate electronic systems.
  • University of Utah Scientist shows it's feasible to read data stored as nuclear spins.


  • Subwavelength waveguide developed for light.
  • Single photon emitter for optical fibers developed.
  • New material proposed for quantum computing.
  • Single atom single photon server devised.
  • First use of Deutsch's Algorithm in a cluster state quantum computer.
  • University of Cambridge develops electron quantum pump.
  • Superior method of qubit coupling developed.
  • Successful Demonstration of Controllably Coupled Qubits.
  • Breakthrough in applying spin-based electronics to silicon.
  • Scientists demonstrate quantum state exchange between light and matter.
  • Diamond quantum register developed.
  • Controlled-NOTquantum gates on a pair of superconducting quantum bits realized.
  • Scientists contain, study hundreds of individual atoms in 3D array.
  • Nitrogen in buckyball used in quantum computing.
  • Large number of electrons quantum coupled.
  • Spin-orbit interaction of electrons measured.
  • Atoms quantum manipulated in laser light.
  • Light pulses used to control electron spins.
  • Quantum effects demonstrated across tens of nanometers.
  • Light pulses used to accelerate quantum computing development.
  • Quantum RAM blueprint unveiled.
  • Model of quantum transistor developed.
  • Long distance entanglement demonstrated.
  • Photonic quantum computing used to factor number by two independent labs.
  • Quantum bus developed by two independent labs.
  • Superconducting quantum cable developed.
  • Transmission of qubits demonstrated.
  • Superior qubit material devised.
  • Single electron qubit memory.
  • Bose-Einstein condensate quantum memory developed
  • D-Wave Systems claims to have working 28-qubit quantum computer.
  • New cryonic method reduces decoherence and increases interaction distance.(and thus quantum computing speed)
  • Photonic quantum computer demonstrated.


  • Graphene quantum dot qubits
  • Quantum bit stored
  • 3D qubit-qutrit entanglement demonstrated
  • Analog quantum computing devised
  • Control of quantum tunneling
  • Entangled memory developed
  • Superior NOT gate developed
  • Qutrits developed
  • Quantum logic gate in optical fiber
  • Nano-Diamonds devised
  • Superior quantum Hall Effect discovered
  • Enduring spin states in quantum dots
  • Molecular magnets proposed for quantum RAM
  • Quasiparticles offer hope of stable quantum computer
  • Image storage may have better storage of qubits
  • Quantum entangled images
  • Quantum state intentionally altered in molecule
  • Electron position controlled in silicon circuit
  • Superconducting Electronic Circuit Pumps Microwave Photons
  • Amplitude spectroscopy developed


Search another word or see quantum biton Dictionary | Thesaurus |Spanish
Copyright © 2015 Dictionary.com, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature