Definitions

nuclear-energy

nuclear energy

or atomic energy

Energy released from atomic nuclei in significant amounts. In 1919 Ernest Rutherford discovered that alpha rays could split the nucleus of an atom. This led ultimately to the discovery of the neutron and the release of huge amounts of energy by the process of nuclear fission. Nuclear energy is also released as a result of nuclear fusion. The release of nuclear energy can be controlled or uncontrolled. Nuclear reactors carefully control the release of energy, whereas the energy release of a nuclear weapon or resulting from a core meltdown in a nuclear reactor is uncontrolled. Seealso chain reaction, nuclear power, radioactivity.

Learn more about nuclear energy with a free trial on Britannica.com.

Nuclear Energy is released by the splitting (fission) or merging together (fusion) of the nuclei of atom(s). The conversion of nuclear mass to energy is consistent with the mass-energy equivalence formula ΔE = Δm.c², in which ΔE = energy release, Δm = mass defect, and c = the speed of light in a vacuum (a physical constant). Nuclear energy was first discovered by French physicist Henri Becquerel in 1896, when he found that photographic plates stored in the dark near uranium were blackened like X-ray plates, which had been just recently discovered at the time 1895.

Nuclear chemistry can be used as a form of alchemy to turn lead into gold or change any atom to any other atom (albeit through many steps). Radionuclide (radioisotope) production often involves irradiation of another isotope (or more precisely a nuclide), with alpha particles, beta particles, or gamma rays. Iron has the highest binding energy per nucleon of any atom. If an atom of lower average binding energy is changed into an atom of higher average binding energy, energy is given off. The chart shows that fusion of hydrogen, the combination to form heavier atoms, releases energy, as does fission of uranium, the breaking up of a larger nucleus into smaller parts. Stability varies between isotopes: the isotope U-235 is much less stable than the more common U-238.

Nuclear energy is released by three exoenergetic (or exothermic) processes:

References

See also

External links

Search another word or see nuclear-energyon Dictionary | Thesaurus |Spanish
Copyright © 2014 Dictionary.com, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature