Added to Favorites

Popular Searches

Definitions

In aerodynamics, hypersonic speeds are speeds that are highly supersonic. Since the 1970s, the term has generally been assumed to refer to speeds of Mach 5 (5 times the speed of sound) and above. The hypersonic regime is a subset of the supersonic regime.

Supersonic airflow is decidedly different from subsonic flow. Nearly everything about the way an aircraft flies changes dramatically as an aircraft accelerates to supersonic speeds. Even with this strong demarcation, there is still some debate as to the definition of "supersonic". One definition is that the aircraft, as a whole, is traveling at Mach 1 or greater. More technical definitions state that you are only supersonic if the airflow over the entire aircraft is supersonic, which occurs around Mach 1.2 on typical designs. The range Mach 0.75 to 1.2 is therefore considered transonic.

Considering the problems with this simple definition, the precise Mach number at which a craft can be said to be fully hypersonic is even more elusive, especially since physical changes in the airflow (molecular dissociation, ionization) occur at quite different speeds. Generally, a combination of effects become important "as a whole" around Mach 5. The hypersonic regime is often defined as speeds where ramjets do not produce net thrust. This is a nebulous definition in itself, as there exists a proposed change to allow them to operate in the hypersonic regime (the Scramjet).

Hypersonic flows, however, require other similarity parameters. Firstly, the analytic equations for the Oblique shock angle become nearly independent of Mach number at high (~>10) Mach numbers. Secondly, the formation of strong shocks around aerodynamic bodies mean that the freestream Reynolds number is less useful as an estimate of the behavior of the boundary layer over a body (although it is still important). Finally, the increased temperature of hypersonic flows mean that real gas effects become important. For this reason, research in hypersonics is often referred to as aerothermodynamics, rather than aerodynamics.

The introduction of real gas effects mean that more variables are required to describe the full state of a gas. Whereas a stationary gas can be described by three variables (pressure, temperature, adiabatic index), and a moving gas by four (velocity), a hot gas in chemical equilibrium also requires state equations for the chemical components of the gas, and a gas in nonequilibrium solves those state equations using time as an extra variable. This means that for a nonequilibrium flow, something between 10 and 100 variables may be required to describe the state of the gas at any given time. Additionally, rarefied hypersonic flows (usually defined as those with a Knudsen number above one) do not follow the Navier-Stokes equations.

Hypersonic flows are typically categorized by their total energy, expressed as total enthalpy (MJ/kg), total pressure (kPa-MPa), stagnation pressure (kPa-MPa), stagnation temperature (K), or velocity (km/s).

Wallace D. Hayes developed a similarity parameter, similar to the Whitcomb area rule, which allowed similar configurations to be compared.

- Optically thin: where the gas does not re-absorb radiation emitted from other parts of the gas
- Optically thick: where the radiation must be considered as a separate source of energy.

The modeling of optically thick gases is extremely difficult, since, due to the calculation of the radiation at each point, the computation load theoretically expands exponentially as the number of points considered increases.

- Subsonic flows.
- Transonic flows.
- Supersonic flows.

- Anderson, John (2006).
*Hypersonic and High-Temperature Gas Dynamics Second Edition*. AIAA Education Series. ISBN 1563477807.

- NASA's Guide to Hypersonics
- Hypersonics Group at Imperial College
- University of Queensland Centre for Hypersonics

Wikipedia, the free encyclopedia © 2001-2006 Wikipedia contributors (Disclaimer)

This article is licensed under the GNU Free Documentation License.

Last updated on Sunday October 05, 2008 at 05:03:59 PDT (GMT -0700)

View this article at Wikipedia.org - Edit this article at Wikipedia.org - Donate to the Wikimedia Foundation

This article is licensed under the GNU Free Documentation License.

Last updated on Sunday October 05, 2008 at 05:03:59 PDT (GMT -0700)

View this article at Wikipedia.org - Edit this article at Wikipedia.org - Donate to the Wikimedia Foundation

Copyright © 2014 Dictionary.com, LLC. All rights reserved.