metal spraying

Thermal spraying

Thermal spraying techniques are coating processes in which melted (or heated) materials are sprayed onto a surface. The "feedstock" (coating precursor) is heated by electrical (plasma or arc) or chemical means (combustion flame).

Thermal spraying can provide thick coatings (approx. thickness range 20 micrometres - several mm, depending on the process and feedstock), over a large area at high deposition rate as compared to other coating processes such as electroplating, physical and chemical vapor deposition. Coating materials available for thermal spraying include metals, alloys, ceramics, plastics and composites. They are fed in powder or wire form, heated to a molten or semimolten state and accelerated towards substrates in the form of micrometre-size particles. Combustion or electrical arc discharge is usually used as the source of energy for thermal spraying. Resulting coatings are made by the accumulation of numerous sprayed particles. The surface may not heat up significantly, allowing the coating of flammable substances.

Coating quality is usually assessed by measuring its porosity, oxide content, macro and microhardness, bond strength and surface roughness. Generally, the coating quality increases with increasing particle velocities.

Several variations of thermal spraying are distinguished:

Flame, wire-arc and plasma spraying

In classical (developed between 1910 and 1920) but still widely used processes such as flame spraying and wire arc spraying, the particle velocities are generally low (< 150 m/s), and raw materials must be molten to be deposited. Plasma spraying, developed in the 1970s, uses a high-temperature plasma jet generated by arc discharge with typical temperatures >15000 K, which makes it possible to spray refractory materials such as oxides, molybdenum, etc.

High velocity oxygen fuel spraying (HVOF)

During the 1980s, a class of thermal spray processes called high velocity oxy-fuel spraying was developed: A mixture of fuel and oxygen is fed into a combustion chamber, where they are ignited and combusted continuously. The resultant hot gas at a pressure close to 1 MPa emanates through a converging–diverging nozzle and travels through a straight section. The fuels can be gases (hydrogen, methane, propane, propylene, acetylene, natural gas, etc.) or liquids (kerosene, etc.). The jet velocity at the exit of the barrel (>1000 m/s) exceeds the speed of sound. The process has been most successful for depositing cermet materials (WC–Co, etc.) and other corrosion-resistant alloys (stainless steels, nickel-based alloys, etc.).

Cold spraying

In the 1990s, cold spraying (often called cold gas dynamic spraying) has been introduced. The method was originally developed in Russia with the accidental observation of the rapid formation of coatings, while experimenting with the particle erosion of the target exposed to a high velocity flow loaded with fine powder in a wind tunnel. In cold spraying, particles are accelerated to very high speeds by the carrier gas forced through a converging–diverging de Laval type nozzle. Upon impact, solid particles with sufficient kinetic energy deform plastically and bond mechanically to the substrate to form a coating. The critical velocity needed to form bonding depends on the materials properties, powder size and temperature. Soft metals such as Cu and Al are best suited for cold spraying, but coating of other materials (W, Ta, Ti, MCrAlY, WC–Co, etc.) by cold spraying has been reported.

The deposition efficiency is low, and the window of process parameters and suitable powder sizes is narrow. To accelerate powders to higher velocity, finer powders (<20 micrometre) are used. It is possible to accelerate powder particles to much higher velocity using a processing gas having high speed of sound (helium instead of nitrogen). However, helium is costly and its flow rate, and thus consumption, is higher. To improve acceleration capability, nitrogen gas is heated up to about 900 C. As a result, deposition efficiency and tensile strength of deposits increase.

Warm spraying

Is a novel modification of high-velocity oxy-fuel spraying, in which the temperature of combustion gas is lowered by mixing nitrogen with the combustion gas, thus bringing the process closer to the cold spraying. The resulting gas contains much water vapor, unreacted hydrocarbons and oxygen, and thus is dirtier than the cold spraying. However, the coating efficiency is higher. On the other hand, lower temperatures of warm spraying reduce melting and chemical reactions of the feed powder, as compared to HVOF. These advantages are especially important for such coating materials as Ti, plastics, and metallic glasses, which rapidly oxidize or deteriorate at high temperatures.


Typical methods


Thermal spraying need not be a dangerous process, if the equipment is treated with care, and correct spraying practices are followed. As with any industrial process, there are a number of hazards, of which the operator should be aware, and against which specific precautions should be taken.

Ideally, equipment should be operated automatically, in enclosures specially designed to extract fumes, reduce noise levels, and present direct viewing of the spraying head. Such techniques will also produce coatings that are more consistent. There are occasions when the type of components being treated, or their low production levels, requires manual equipment operation. Under these conditions, a number of hazards, peculiar to thermal spraying, are experienced, in addition to those commonly encountered in production or processing industries.


Metal spraying equipment uses compressed gases, which create noise. Sound levels vary with the type of spraying equipment, the material being sprayed, and the operating parameters. Typical sound pressure levels taken 1 meter behind the arc.

UV light

Combustion spraying equipment produces an intense flame, which may have a peak temperature more than 3,100°C, and is very bright. Electric arc spraying produces ultra-violet light, which may damage delicate body tissues. Spray booths, and enclosures, should be fitted with ultra-violet absorbent dark glass. Where this is not possible, operators, and others in the vicinity should wear protective goggles containing BS grade 6 green glass. Opaque screens should be placed around spraying areas. The nozzle of an arc pistol should never be viewed directly, unless it is certain that no power is available to the equipment.

Dust and fumes

The atomization of molten materials produces a certain amount of dust and fumes. Proper extraction facilities are vital, not only for personal safety, but to minimize entrapment of re-frozen particles in the sprayed coatings. The use of breathing masks, fitted with suitable filters, is strongly recommended, where equipment cannot be isolated. Certain materials offer specific known hazards.

  1. Finely divided metal particles are potentially pyrophoric and none should be allowed to accumulate.
  2. Certain materials e.g. aluminum, zinc and other base metals may react with water to evolve hydrogen. This is potentially explosive and special precautions are necessary in fume extraction equipment.
  3. Fumes of certain materials, notably zinc and copper alloys are unpleasant to smell, and, in certain individuals, may cause a fever-type reaction. This may occur some time after spraying and usually subsides rapidly. If it does not, medical advice must be sought.


Combustion spraying guns use oxygen and fuel gases. The fuel gases are potentially explosive. In particular, acetylene may only be used under approved conditions. Oxygen, while not explosive, will sustain combustion, and many materials will spontaneously ignite, if excessive oxygen levels are present. Care must be taken to avoid leakage, and to isolate oxygen and fuel gas supplies, when not in use.

Shock hazards

Electric arc guns operate at low voltages (below 45 V dc), but at relatively high currents. They may be safely hand-held. The power supply units are connected to 440 V AC sources, and must be treated with caution.

Further reading

Search another word or see metal sprayingon Dictionary | Thesaurus |Spanish
Copyright © 2014, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature