Added to Favorites

Related Searches

Nearby Words

In mathematics, informally speaking, a limit point of a set S in a topological space X is a point x in X that can be "approximated" by points of S other than x itself. This concept profitably generalizes the notion of a limit and is the underpinning of concepts such as closed set and topological closure. Indeed, a set is closed if and only if it contains all of its limit points, and the topological closure operation can be thought of as an operation that enriches a set by adding its limit points.## Definition

Let S be a subset of a topological space X.
We say that a point x in X is a limit point of S if
every open set containing x also contains a point of S other than x itself. This is equivalent to requiring that every neighbourhood of x contains a point of S other than x itself. (It is often convenient to use the "open neighbourhood" form of the definition to show that a point is a limit point and to use the "general neighbourhood" form of the definition to derive facts from a known limit point.)
## Types of limit points

If every open set containing x contains infinitely many points of S then x is a specific type of limit point called a ω-accumulation point of S.## Some facts

## See also

## References

A prototypical example of a limit point is an accumulation point, which is a limit point of the set of points in a sequence.

If every open set containing x contains uncountably many points of S then x is a specific type of limit point called a condensation point of S.

If $X$ is a metric space with distance $d$, then a point $x$$in$ $X$ is a cluster point of a sequence $\{x\_n\}$ if for every $epsilon>0$, there are infinitely many points $x\_n$ such that $d(x,x\_n)math>.$

The concept of a net generalizes the idea of a sequence. Cluster points in nets encompass the idea of both condensation points and ω-accumulation points. Clustering and limit points are also defined for the related topic of filters.

The set of all cluster points of a sequence is sometimes called a limit set.

- We have the following characterisation of limit points: x is a limit point of S if and only if it is in the closure of S {x}.
- Proof: We use the fact that a point is in the closure of a set if and only if every neighbourhood of the point meets the set. Now, x is a limit point of S, if and only if every neighbourhood of x contains a point of S other than x, if and only if every neighbourhood of x contains a point of S {x}, if and only if x is in the closure of S {x}.
- If we use L(S) to denote the set of limit points of S, then we have the following characterisation of the closure of S: The closure of S is equal to the union of S and L(S).
- Proof: ("Left subset") Suppose x is in the closure of S. If x is in S, we are done. If x is not in S, then every neighbourhood of x contains a point of S, and this point cannot be x. In other words, x is a limit point of S and x is in L(S). ("Right subset") If x is in S, then every neighbourhood of x clearly meets S, so x is in the closure of S. If x is in L(S), then every neighbourhood of x contains a point of S (other than x), so x is again in the closure of S. This completes the proof.
- A corollary of this result gives us a characterisation of closed sets: A set S is closed if and only if it contains all of its limit points.
- Proof: S is closed if and only if S is equal to its closure if and only if S = S ∪ L(S) if and only if L(S) is contained in S.
- Another proof: Let S be a closed set and x a limit point of S. Then x must be in S, for otherwise the complement of S would be an open neighborhood of x that does not intersect S. Conversely, assume S contains all its limit points. We shall show that the complement of S is an open set. Let x be a point in the complement of S. By assumption, x is not a limit point, and hence there exists an open neighborhood U of x that does not intersect S, and so U lies entirely in the complement of S. Hence the complement of S is open.
- No isolated point is a limit point of any set.
- Proof: If x is an isolated point, then {x} is a neighbourhood of x that contains no points other than x.
- A space X is discrete if and only if no subset of X has a limit point.
- Proof: If X is discrete, then every point is isolated and cannot be a limit point of any set. Conversely, if X is not discrete, then there is a singleton {x} that is not open. Hence, every open neighbourhood of {x} contains a point y ≠ x, and so x is a limit point of X.
- If a space X has the trivial topology and S is a subset of X with more than one element, then all elements of X are limit points of S. If S is a singleton, then every point of X S is still a limit point of S.
- Proof: As long as S {x} is nonempty, its closure will be X. It's only empty when S is empty or x is the unique element of S.

Wikipedia, the free encyclopedia © 2001-2006 Wikipedia contributors (Disclaimer)

This article is licensed under the GNU Free Documentation License.

Last updated on Friday September 26, 2008 at 22:52:39 PDT (GMT -0700)

View this article at Wikipedia.org - Edit this article at Wikipedia.org - Donate to the Wikimedia Foundation

This article is licensed under the GNU Free Documentation License.

Last updated on Friday September 26, 2008 at 22:52:39 PDT (GMT -0700)

View this article at Wikipedia.org - Edit this article at Wikipedia.org - Donate to the Wikimedia Foundation

Copyright © 2014 Dictionary.com, LLC. All rights reserved.