hydrogen cyanide

hydrogen cyanide

hydrogen cyanide, HCN, colorless, volatile, and extremely poisonous chemical compound whose vapors have a bitter almond odor. It melts at -14°C; and boils at 26°C;. It is miscible in all proportions with water or ethanol and is soluble in ether. Its water solution is a weak acid (see acids and bases) commonly known as hydrocyanic acid or prussic acid. Its salts are called cyanides. Hydrogen cyanide may be synthesized directly from ammonia and carbon monoxide or from ammonia, oxygen (or air), and natural gas. It is a byproduct of the production of coke from coal and is recovered (along with hydrogen sulfide) from coke-oven exhaust gases. It may also be prepared by reacting a cyanide salt, e.g., calcium cyanide, with a strong acid, e.g., sulfuric acid, or by thermal decomposition of formamide. Because impure hydrogen cyanide can undergo spontaneous explosive polymerization and decomposition, a small amount of stabilizer (usually phosphoric acid) is added to it. The principal use of hydrogen cyanide is in the manufacture of organic chemicals, e.g., acrylonitrile, methyl methacrylate, and adiponitrile, that are used in producing synthetic fibers and plastics. It is also used in the chemical laboratory, and is sometimes used in agriculture as a fumigant. Hydrogen cyanide is found in nature in some vegetable substances, e.g., bitter almond, peach stones, cherry and cherry laurel leaves, and sorghum; it is usually combined in glycoside molecules (see sugar) and is released when they are broken down by enzymes during metabolism.
| Section8 = }} Hydrogen cyanide is a chemical compound with chemical formula HCN. A solution of hydrogen cyanide in water is called hydrocyanic acid. Hydrogen cyanide is a colorless, very poisonous, and highly volatile liquid that boils slightly above room temperature at 26 °C (78.8 °F). HCN has a faint, bitter, almond-like odor that some people are unable to detect due to a genetic trait. Hydrogen cyanide is weakly acidic and partly ionizes in solution to give the cyanide anion, CN. The salts of hydrogen cyanide are known as cyanides. HCN is a highly valuable precursor to many chemical compounds ranging from polymers to pharmaceuticals.

Production and synthesis

Hydrogen cyanide is currently produced in large quantities by three processes. In the year 2000, 1.615 billion pounds (732,552 tons) were produced in the US. The most important process for the production of hydrogen cyanide is the Andrussov oxidation invented by Leonid Andrussow in which methane and ammonia react in the presence of oxygen at about 1200 °C over a platinum catalyst:
2CH4 + 2NH3 + 3O2 → 2HCN + 6H2O
The energy needed for the reaction is provided by the part oxidation of methane and ammonia.

Of lesser importance is the Degussa process (BMA process) in which no oxygen is added and the energy must be transferred indirectly through the reactor wall:

CH4 + NH3 → HCN + 3H2

This reaction is akin to steam reforming, the reaction of methane and water. In another process, practiced at BASF, formamide is heated and split into hydrogen cyanide and water:

CH(O)NH2 → HCN + H2O

In the laboratory, small amounts of HCN are produced by the addition of acids to cyanide salts of alkali metals:

H+ + NaCN → HCN + Na+
This reaction is sometimes the basis of accidental poisonings because the acid converts a nonvolatile cyanide salt into the gaseous HCN.


The first source for hydrogen cyanide was the reaction of acid on ferrocyanides. The rising demand due to the use of cyanides for mining operations in the 1890s was met by the Bleiby process. George Thomas Beilby patented a method to produce hydrogen cyanide by passing ammonia over glowing coal in 1892. This method was used until Hamilton Castner in 1894 developed a synthesis starting from coal, ammonia and sodium yielding sodium cyanide, which reacts with acid to form gaseous HCN.


HCN adds to ketones and aldehydes to give cyanohydrins. Amino acids are prepared by this reaction; the essential amino acid methionine is manufactured by this route.The cyanohydrin of acetone is a precursor to methyl methacrylate.

In hydrocyanation, HCN adds to alkenes to give nitriles. This reaction is employed to manufacture adiponitrile, the precursor to Nylon 66.

Occurrence and applications

Cyanide is used in tempering steel, dyeing, explosives, engraving, the production of acrylic resin plastic, and other organic chemical products (eg: historically: formic acid). The less toxic ethyl acetate (C4H8O2) has now largely replaced the use of cyanide in insect killing jars. Hydrogen Cyanide is also being used for capital punishment in gas chambers in six US states, all of which have other options available..

Fruits that have a pit, such as cherries, apricots, apples, and bitter almonds from which almond oil and flavoring are made, contain small amounts of cyanohydrins such as mandelonitrile (CAS#532-28-5). Such molecules slowly release hydrogen cyanide. Some millipedes release hydrogen cyanide as a defense mechanism, as do certain insects such as some burnet moths. Hydrogen cyanide is contained in the exhaust of vehicles, in tobacco and wood smoke, and in smoke from burning nitrogen-containing plastics.

100 g of crushed apple seeds can yield 219 mg of Amygdalin which can generate ~10 mg of HCN.

Hydrogen cyanide can also be used to purify water. This is so because it affects the respiration of the bacteria and other germs in the water.

HCN and the origin of life

Hydrogen cyanide has been discussed as a precursor to amino acids and nucleic acids. It is possible, for example, that HCN played a part in the origin of life. Leslie Orgel, among many researchers, has written extensively on the condensation of HCN. Although the relationship of these chemical reactions to the origin of life remains speculative, studies in this area have led to discoveries of new pathways to organic compounds derived from condensation of HCN.

Hydrogen cyanide as a poison and chemical weapon

See also: cyanide poisoning

An HCN concentration of 300 mg/m3 in air will kill a human within a few minutes. The toxicity is caused by the cyanide ion, which prevents cellular respiration. Hydrogen cyanide (under the brand name Zyklon B) was most infamously employed by the Nazi regime in the mid-20th century.

Hydrogen cyanide is commonly listed amongst chemical warfare agents that cause general poisoning. As a substance listed under Schedule 3 of the Chemical Weapons Convention as a potential weapon which has large-scale industrial uses, manufacturing plants in signatory countries which produce more than 30 tonnes per year must be declared to, and can be inspected by, the OPCW.

Hydrogen cyanide gas in air is explosive at concentrations over 5.6%, equivalent to 56,000 ppm.



See also

External links

Search another word or see hydrogen cyanideon Dictionary | Thesaurus |Spanish
Copyright © 2014 Dictionary.com, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature