Definitions

fossil

fossil

[fos-uhl]
fossil, remains or imprints of plants or animals preserved from prehistoric times by the operation of natural conditions. Fossils are found in sedimentary rock, asphalt deposits, and coal and sometimes in amber and certain other materials. The scientific study of fossils is paleontology. Not until c.1800 were fossils generally recognized as the remains of living things of the past and accepted as an invaluable record of the earth's history.

The Formation of Fossils

Conditions conducive to the formation of fossils include quick burial in moist sediment or other material that tends to prevent weathering and to exclude oxygen and bacteria, thereby preventing decay. Shells and bones embedded in sediment in past geologic time, under conditions suitable for preservation, left exact reproductions of both external and internal structures. Skeletal remains have been preserved as a result of the engulfment of an animal's body in ancient asphalt pits, bogs, and quicksand. At Rancho La Brea, near Los Angeles, Calif., asphalt deposits have yielded a rich variety of skeletons of birds and mammals. Some fossils have been found buried in volcanic ash; such fossil deposits exist in the Cenozoic rocks of the W United States.

The Creation of Natural Molds

Sometimes, after specimens were enclosed in the rock formed from the hardened sediments, water percolating through the ground dissolved out the remains, leaving a cavity within which only the form was preserved. This is known as a natural mold. When such molds are discovered by fossil hunters, casts can be made from them by filling them with plastic materials. If molds have been filled with mineral matter by subsurface water, natural casts are formed. Molds of insects that lived many millions of years ago are sometimes found preserved in amber. These were formed by the enveloping and permeation of an insect by sticky pine tree resin which hardened to become amber. So perfectly formed are these molds that detailed microscopic studies can be made of the insect's minute structure. Molds of thin objects such as leaves are usually known as imprints.

The Preservation of Flesh and Soft Parts

Fossilization of skeletal structures or other hard parts is most common; only rarely are flesh and other soft parts preserved. Impressions of dinosaur skin have aided scientists in making restorations of these animals. Imprints of footprints and trails left by both vertebrate and invertebrate animals are also valuable aids to studies of prehistoric life. Coprolites are fossilized excrement material; if it is possible to determine their sources they are useful in revealing the feeding habits of the animals.

Entire animals of the late Pleistocene have sometimes been preserved. In Siberia some 50 specimens of woolly mammoths and a long-horned rhinoceros were found preserved in ice with even the skin and flesh intact. Several specimens of the woolly rhinoceros bearing some skin and flesh have been found in oil-saturated soils in Poland.

The Petrifaction of Remains

Petrifaction is another method of preservation of both plant and animal remains. This can occur in several ways. Mineral matter from underground water may be deposited in the interstices of porous materials, e.g., bones and some shells, making the material more compact and more stonelike and thus protecting it against disintegration. The original material may be entirely replaced with mineral matter, molecule by molecule, so that the original appearance and the microscopic structure are retained, as in petrified wood. Sometimes, on the other hand, all details of structure are lost in the replacement of organic matter by minerals, and only the form of the original is retained. In shales are sometimes found the silhouettes of plant tissues (more rarely of animals) formed by the carbon residue of the organism that remains after the volatile elements have been driven off.

Bibliography

See C. L. and M. A. Fenton, The Fossil Book (1958, rev. ed. 1988); M. Murray, Hunting for Fossils (1967); M. J. Rudwick, The Meaning of Fossils (2d ed. 1985); S. J. Gould, Wonderful Life (1989).

Any of a class of materials of biologic origin occurring within the Earth's crust that can be used as a source of energy. Fossil fuels include coal, petroleum, and natural gas. They all contain carbon and were formed as a result of geologic processes acting on the remains of (mostly) plants and animals that lived and died hundreds of millions of years ago. All fossil fuels can be burned to provide heat, which may be used directly, as in home heating, or to produce steam to drive a generator for the production of electricity. Fossil fuels supply nearly 90percnt of all the energy used by industrially developed nations.

Learn more about fossil fuel with a free trial on Britannica.com.

Remnant, impression, or trace of an animal or plant of a past geologic age that has been preserved in the Earth's crust. The data recorded in fossils, known as the fossil record, constitute the primary source of information about the history of life on the Earth. Only a small fraction of ancient organisms are preserved as fossils, and usually only organisms that have a solid skeleton or shell. A shell or bone that is buried quickly after deposition may retain organic tissue, though it becomes petrified (converted to a stony substance) over time. Unaltered hard parts, such as the shells of clams, are relatively common in sedimentary rocks. The soft parts of animals or plants are rarely preserved. The embedding of insects in amber and the preservation of mammoths in ice are rare but striking examples of the fossil preservation of soft tissues. Traces of organisms may also occur as tracks, trails, or even borings.

Learn more about fossil with a free trial on Britannica.com.

Natural “depository” of an extinct animal community on the Niobrara River, northwestern Nebraska, U.S. The beds, laid down as sedimentary deposits 20 million years ago, bear the remains of prehistoric mammals. Discovered circa 1878, the site was named for its proximity to rock formations containing agates. A national monument since 1965, it covers 2,269 acres (918 hectares).

Learn more about Agate Fossil Beds National Monument with a free trial on Britannica.com.

Fossils (from Latin fossus, literally "having been dug up") are the preserved remains or traces of animals, plants, and other organisms from the remote past. The totality of fossils, both discovered and undiscovered, and their placement in fossiliferous (fossil-containing) rock formations and sedimentary layers (strata) is known as the fossil record. The study of fossils across geological time, how they were formed, and the evolutionary relationships between taxa (phylogeny) are some of the most important functions of the science of paleontology.

Fossils are typically distinguished by minimum age, most often the arbitrary date of 10,000 years ago. Hence, fossils range in age from the youngest at the start of the Holocene Epoch to the oldest from the Archaean Eon several billion years old. The observations that certain fossils were associated with certain rock strata led early geologists to recognize a geological timescale in the 19th century. The development of radiometric dating techniques in the early 20th century allowed geologists to determine the numerical or "absolute" age of the various strata and thereby the included fossils.

Like extant organisms, fossils vary in size from microscopic, such as single bacterial cells only one micrometer in diameter, to gigantic, such as dinosaurs and trees many meters long and weighing many tons. A fossil normally preserves only a portion of the deceased organism, usually that portion that was partially mineralized during life, such as the bones and teeth of vertebrates, or the chitinous exoskeletons of invertebrates. Preservation of soft tissues is exquisitely rare in the fossil record. Fossils may also consist of the marks left behind by the organism while it was alive, such as the footprint or feces (coprolites) of a reptile. These types of fossil are called trace fossils (or ichnofossils), as opposed to body fossils. Finally, past life leaves some markers that cannot be seen but can be detected in the form of biochemical signals; these are known as chemofossils or biomarkers.

Places of exceptional fossilization

Fossil sites with exceptional preservation — sometimes including preserved soft tissues — are known as Lagerstätten. These formations may have resulted from carcass burial in an anoxic environment with minimal bacteria, thus delaying decomposition. Lagerstätten span geological time from the Cambrian period to the present. Worldwide, some of the best examples of near-perfect fossilization are the Cambrian Maotianshan shales and Burgess Shale, the Devonian Hunsrück Slates, the Jurassic Solnhofen limestone, and the Carboniferous Mazon Creek localities.

Earliest fossiliferous sites

Earth’s oldest fossils are the stromatolites consisting of rock built from layer upon layer of sediment and other precipitants. Based on studies of now-rare (but living) stromatolites (specifically, certain blue-green bacteria), the growth of fossil stromatolitic structures was biogenetically mediated by mats of microorganisms through their entrapment of sediments. However, abiotic mechanisms for stromatolitic growth are also known, leading to a decades-long and sometimes-contentious scientific debate regarding biogenesis of certain formations, especially those from the lower to middle Archaean eon.

It is most widely accepted that stromatolites from the late Archaean and through the middle Proterozoic eon were mostly formed by massive colonies of cyanobacteria (formerly known as blue-green "algae"), and that the oxygen byproduct of their photosynthetic metabolism first resulted in earth’s massive banded iron formations and subsequently oxygenated earth’s atmosphere.

Even though it is extra rare, microstructures resembling cells are sometimes found within stromatolites; but these are also the source of scientific contention. The Gunflint Chert contains abundant microfossils widely accepted as a diverse consortium of 2.0 bya microbes.

In contrast, putative fossil cyanobacteria cells from the 3.4 bya Warrawoona Group in Western Australia are in dispute since abiotic processes cannot be ruled out. Confirmation of the Warrawoona microstructures as cyanobacteria would profoundly impact our understanding of when and how early life diversified, pushing important evolutionary milestones further back in time (reference). The continued study of these oldest fossils is paramount to calibrate complementary molecular phylogenetics models.

Developments in interpretation of the fossil record

Ever since recorded history began, and probably before, people have noticed and gathered fossils, including pieces of rock and minerals that have replaced the remains of biologic organisms, or preserved their external form. Fossils themselves, and the totality of their occurrence within the sequence of Earth's rock strata is referred to as the fossil record.

The fossil record was one of the early sources of data relevant to the study of evolution and continues to be relevant to the history of life on Earth. Paleontologists examine the fossil record in order to understand the process of evolution and the way particular species have evolved.

Explanations

Various explanations have been put forth throughout history to explain what fossils are and how they came to be where they were found. Many of these explanations relied on folktales or mythologies. In China the fossil bones of ancient mammals including Homo erectus were often mistaken for “dragon bones” and used as medicine and aphrodisiacs. In the West the presence of fossilized sea creatures high up on mountainsides was seen as proof of the biblical deluge.

In 1027, the Persian geologist, Ibn Sina (known as Avicenna in Europe), explained how the stoniness of fossils was caused in The Book of Healing. Aristotle previously explained it in terms of vaporous exhalations, which Ibn Sina modified into the theory of petrifying fluids (succus lapidificatus), which was elaborated on by Albert of Saxony in the 14th century and accepted in some form by most naturalists by the 16th century. Ibn Sina gave the following explanation for the origin of fossils from the petrifaction of plants and animals:

More scientific views of fossils emerged during the Renaissance. For example, Leonardo Da Vinci noticed discrepancies with the use of the biblical flood narrative as an explanation for fossil origins:

William Smith (1769-1839), an English canal engineer, observed that rocks of different ages (based on the law of superposition) preserved different assemblages of fossils, and that these assemblages succeeded one another in a regular and determinable order. He observed that rocks from distant locations could be correlated based on the fossils they contained. He termed this the principle of faunal succession.

Smith, who preceded Charles Darwin, was unaware of biological evolution and did not know why faunal succession occurred. Biological evolution explains why faunal succession exists: as different organisms evolve, change and go extinct, they leave behind fossils. Faunal succession was one of the chief pieces of evidence cited by Darwin that biological evolution had occurred.

Biological explanations

Early naturalists well understood the similarities and differences of living species leading Linnaeus to develop a hierarchical classification system still in use today. It was Darwin and his contemporaries who first linked the hierarchical structure of the great tree of life in living organisms with the then very sparse fossil record. Darwin eloquently described a process of descent with modification, or evolution, whereby organisms either adapt to natural and changing environmental pressures, or they perish.

When Charles Darwin wrote On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, the oldest animal fossils were those from the Cambrian Period, now known to be about 540 million years old. The absence of older fossils worried Darwin about the implications for the validity of his theories, but he expressed hope that such fossils would be found, noting that: "only a small portion of the world is known with accuracy." Darwin also pondered the sudden appearance of many groups (i.e. phyla) in the oldest known Cambrian fossiliferous strata.

Further discoveries

Since Darwin's time, the fossil record has been pushed back to between 2.3 and 3.5 billion years before the present. Most of these Precambrian fossils are microscopic bacteria or microfossils. However, macroscopic fossils are now known from the late Proterozoic. The Ediacaran biota (also called Vendian biota) dating from 575 million years ago collectively constitutes a richly diverse assembly of early multicellular eukaryotes.

The fossil record and faunal succession form the basis of the science of biostratigraphy or determining the age of rocks based on the fossils they contain. For the first 150 years of geology, biostratigraphy and superposition were the only means for determining the relative age of rocks. The geologic time scale was developed based on the relative ages of rock strata as determined by the early paleontologists and stratigraphers.

Since the early years of the twentieth century, absolute dating methods, such as radiometric dating (including potassium/argon, argon/argon, uranium series, and carbon-14 dating) have been used to verify the relative ages obtained by fossils and to provide absolute ages for many fossils. Radiometric dating has shown that the earliest known stromatolites are over 3.4 billion years old. Various dating methods have been used and are used today depending on local geology and context, and while there is some variance in the results from these dating methods, nearly all of them provide evidence for a very old Earth, approximately 4.6 billion years.

Modern view

"The fossil record is life’s evolutionary epic that unfolded over four billion years as environmental conditions and genetic potential interacted in accordance with natural selection. The earth’s climate, tectonics, atmosphere, oceans, and periodic disasters invoked the primary selective pressures on all organisms, which they either adapted to, or they perished with or without leaving descendants. Modern paleontology has joined with evolutionary biology to share the interdisciplinary task of unfolding the tree of life, which inevitably leads backwards in time to the microscopic life of the Precambrian when cell structure and functions evolved. Earth’s deep time in the Proterozoic and deeper still in the Archaean is only "recounted by microscopic fossils and subtle chemical signals. Molecular biologists, using phylogenetics, can compare protein amino acid or nucleotide sequence homology (i.e., similarity) to infer taxonomy and evolutionary distances among organisms, but with limited statistical confidence. The study of fossils, on the other hand, can more specifically pinpoint when and in what organism branching occurred in the tree of life. Modern phylogenetics and paleontology work together in the clarification of science’s still dim view of the appearance of life and its evolution during deep time on earth.

Niles Eldredge’s study of the Phacops trilobite genus supported the hypothesis that modifications to the arrangement of the trilobite’s eye lenses proceeded by fits and starts over millions of years during the Devonian. Eldredge's interpretation of the Phacops fossil record was that the aftermaths of the lens changes, but not the rapidly occurring evolutionary process, were fossilized. This and other data led Stephen Jay Gould and Niles Eldredge to publish the seminal paper on punctuated equilibrium in 1971.

Example of modern development

An example of modern paleontological progress is the application of synchrotron X-ray tomographic techniques to early Cambrian bilaterian embryonic microfossils that has recently yielded new insights of metazoan evolution at its earliest stages. The tomography technique provides previously unattainable three-dimensional resolution at the limits of fossilization. Fossils of two enigmatic bilaterians, the worm-like Markuelia and a putative, primitive protostome, Pseudooides, provide a peek at germ layer embryonic development. These 543-million-year-old embryos support the emergence of some aspects of arthropod development earlier than previously thought in the late Proterozoic. The preserved embryos from China and Siberia underwent rapid diagenetic phosphatization resulting in exquisite preservation, including cell structures. This research is a notable example of how knowledge encoded by the fossil record continues to contribute otherwise unattainable information on the emergence and development of life on Earth. For example, the research suggests Markuelia has closest affinity to priapulid worms, and is adjacent to the evolutionary branching of Priapulida, Nematoda and Arthropoda.

Rarity of fossils

Fossilization is an exceptionally rare occurrence, because most components of formerly-living things tend to decompose relatively quickly following death. In order for an organism to be fossilized, the remains normally need to be covered by sediment as soon as possible. However there are exceptions to this, such as if an organism becomes frozen, desiccated, or comes to rest in an anoxic (oxygen-free) environment. There are several different types of fossils and fossilization processes.

Due to the combined effect of taphonomic processes and simple mathematical chance, fossilization tends to favor organisms with hard body parts, those that were widespread, and those that lived for a long time. On the other hand, it is very unusual to find fossils of small, soft bodied, geographically restricted and geologically ephemeral organisms, because of their relative rarity and low likelihood of preservation.

Larger specimens (macrofossils) are more often observed, dug up and displayed, although microscopic remains (microfossils) are actually far more common in the fossil record.

Some casual observers have been perplexed by the rarity of transitional species within the fossil record. The conventional explanation for this rarity was given by Darwin, who stated that "the extreme imperfection of the geological record," combined with the short duration and narrow geographical range of transitional species, made it unlikely that many such fossils would be found. Simply put, the conditions under which fossilization takes place are quite rare; and it is highly unlikely that any given organism will leave behind a fossil. Eldredge and Gould developed their theory of punctuated equilibrium in part to explain the pattern of stasis and sudden appearance in the fossil record.

Types of preservation

Permineralization

Permineralization occurs after burial, as the empty spaces within an organism (spaces filled with liquid or gas during life) become filled with mineral-rich groundwater and the minerals precipitate from the groundwater, thus occupying the empty spaces. This process can occur in very small spaces, such as within the cell wall of a plant cell. Small scale permineralization can produce very detailed fossils. For permineralization to occur, the organism must become covered by sediment soon after death or soon after the initial decaying process. The degree to which the remains are decayed when covered determines the later details of the fossil. Some fossils consist only of skeletal remains or teeth; other fossils contain traces of skin, feathers or even soft tissues. This is a form of diagenesis.

Casts and molds

In some cases the original remains of the organism have been completely dissolved or otherwise destroyed. When all that is left is an organism-shaped hole in the rock, it is called an external mold. If this hole is later filled with other minerals, it is a cast. An internal mold is formed when sediments or minerals fill the internal cavity of an organism, such as the inside of a bivalve or snail.

Replacement and recrystallization

Replacement occurs when the shell, bone or other tissue is replaced with another mineral. In some cases mineral replacement of the original shell occurs so gradually and at such fine scales that microstructural features are preserved despite the total loss of original material. A shell is said to be recrystallized when the original skeletal minerals are still present but in a different crystal form, as from aragonite to calcite.

Compression fossils

Compression fossils, such as those of fossil ferns, are the result of chemical reduction of the complex organic molecules composing the organism's tissues. In this case the fossil consists of original material, albeit in a geochemically altered state. Often what remains is a carbonaceous film. This chemical change is an expression of diagenesis.

Bioimmuration

Bioimmuration is a type of preservation in which a skeletal organism overgrows or otherwise subsumes another organism, preserving the latter, or an impression of it, within the skeleton. Usually it is a sessile skeletal organism, such as a bryozoan or an oyster, which grows along a substrate, covering other sessile encrusters. Sometimes the bioimmured organism is soft-bodied and is then preserved in negative relief as a kind of external mold. There are also cases where an organism settles on top of a living skeletal organism which grows upwards, preserving the settler in its skeleton. Bioimmuration is known in the fossil record from the Ordovician to the Recent.

To sum up, fossilization processes proceed differently for different kinds of tissues and under different kinds of conditions.

Trace fossils

Trace fossils are the remains of trackways, burrows, bioerosion, eggs and eggshells, nests, droppings and other types of impressions. Fossilized droppings, called coprolites, can give insight into the feeding behavior of animals and can therefore be of great importance.

Microfossils

'Microfossil' is a descriptive term applied to fossilized plants and animals whose size is just at or below the level at which the fossil can be analyzed by the naked eye. A commonly applied cut-off point between "micro" and "macro" fossils is 1 mm, although this is only an approximate guide. Microfossils may either be complete (or near-complete) organisms in themselves (such as the marine plankters foraminifera and coccolithophores) or component parts (such as small teeth or spores) of larger animals or plants. Microfossils are of critical importance as a reservoir of paleoclimate information, and are also commonly used by biostratigraphers to assist in the correlation of rock units.

Resin fossils

Fossil resin (colloquially called amber) is a natural polymer found in many types of strata throughout the world, even the Arctic. The oldest fossil resin dates to the Triassic, though most dates to the Tertiary. The excretion of the resin by certain plants is thought to be an evolutionary adaptation for protection from insects and to seal wounds caused by damage elements. Fossil resin often contains other fossils called inclusions that were captured by the sticky resin. These include bacteria, fungi, other plants, and animals. Animal inclusions are usually small invertebrates, predominantly arthropods such as insects and spiders, and only extremely rarely a vertebrate such as a small lizard. Preservation of inclusions can be exquisite, including small fragments of DNA.

Pseudofossils

Pseudofossils are visual patterns in rocks that are produced by naturally occurring geologic processes rather than biologic processes. They can easily be mistaken for real fossils. Some pseudofossils, such as dendrites, are formed by naturally occurring fissures in the rock that get filled up by percolating minerals. Other types of pseudofossils are kidney ore (round shapes in iron ore) and moss agates, which look like moss or plant leaves. Concretions, spherical or ovoid-shaped nodules found in some sedimentary strata, were once thought to be dinosaur eggs, and are often mistaken for fossils as well.

Living fossils

Living fossil is an informal term used for any living species which closely resembles a species known from fossils -- that is, it is as if the ancient fossil had "come to life."

This can be (a) a species or taxon known only from fossils until living representatives were discovered, such as the lobe-finned coelacanth, primitive monoplacophoran mollusk, and the Chinese maidenhair tree, or (b) a single living species with no close relatives, such as the New Caledonian Kagu, or the Sunbittern, or (c) a small group of closely-related species with no other close relatives, such as the oxygen-producing, primoidial stromatolite, inarticulate lampshell Lingula, many-chambered pearly Nautilus, rootless whisk fern, armored horseshoe crab, and dinosaur-like tuatara that are the sole survivors of a once large and widespread group in the fossil record.

See also

References

External links

Search another word or see fossilon Dictionary | Thesaurus |Spanish
Copyright © 2014 Dictionary.com, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature