Definitions

emission spectra

Emission spectroscopy

Emission spectroscopy is a spectroscopic technique which examines the wavelengths of photons emitted by atoms or molecules during their transition from an excited state to a lower energy state. Each element emits a characteristic set of discrete wavelengths according to its electronic structure, by observing these wavelengths the elemental composition of the sample can be determined. Emission spectroscopy developed in the late 19th century and efforts in theoretical explanation of atomic emission spectra eventually lead to quantum mechanics.

There are many ways in which atoms can be brought to an excited state. Interaction with electromagnetic radiation is used in fluorescence spectroscopy, protons or other heavier particles in Particle-Induced X-ray Emission and electrons or X-ray photons in Energy-dispersive X-ray spectroscopy or X-ray fluorescence. The simplest method is to heat the sample to a high temperature, after which the excitations are produced by collisions between the sample atoms. This method is used in flame emission spectroscopy, and it was also the method used by Anders Jonas Ångström when he discovered the phenomenon of discrete emission lines in 1850s.

Although the emission lines are caused by a transition between quantized energy states and may at first look very sharp, they do have a finite width, i.e. they are composed of more than one wavelength of light. This spectral line broadening has many different causes.

Emission spectroscopy is often referred to as optical emission spectroscopy, due to the light nature of what is being emitted.

History

Emission lines from hot gases were first discovered by Ångström, and the technique was further developed by David Alter, Gustav Kirchhoff and Robert Bunsen.

See spectrum analysis for details.

Experimental technique in flame emission spectroscopy

The solution containing the relevant substance to be analysed is drawn into the burner and dispersed into the flame as a fine spray. The solvent evaporates first, leaving finely divided solid particles which move to hottest region of the flame where gaseous atoms and ions are produced. Here electrons are excited as described above. It is common for a monochromator to be used to allow for easy detection.

On a simple level, flame emission spectroscopy can be observed using just a Bunsen burner and samples of metals. For example, sodium metal placed in the flame will glow yellow, whilst calcium metal particles will glow red, copper placed into the flame will create a green flame.

See also

Search another word or see emission spectraon Dictionary | Thesaurus |Spanish
Copyright © 2014 Dictionary.com, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature