dialysis

dialysis

[dahy-al-uh-sis]
dialysis, in chemistry, transfer of solute (dissolved solids) across a semipermeable membrane. Strictly speaking, dialysis refers only to the transfer of the solute; transfer of the solvent is called osmosis. Dialysis is frequently used to separate different components of a solution. For example, a solution of starch and sodium chloride in water can be separated by placing the mixture in a vessel on one side of a semipermeable membrane and placing pure water on the other side. The smaller particles of sodium chloride (which dissolve in water to form sodium and chloride ions) will diffuse across the membrane; diffusion of the much larger starch particles (which are not truly in solution but are in colloidal suspension) is hindered and may be completely prevented. By continuously or periodically replacing the solvent with fresh solvent, almost all of the sodium chloride can be removed. The method was originated by Thomas Graham, who termed the substance that remained within the membrane a colloid and the substance that diffused a crystalloid.

An extension of the method makes possible the separation of mixed colloids by the use of a semipermeable membrane (usually synthetic) of known selectivity, i.e., one that will permit the diffusion of one colloid and hinder the diffusion of others. Mixed macromolecules, such as proteins, may be similarly separated. By the use of graded semipermeable membranes chosen to allow successively smaller molecules to pass, mixtures can be separated into components of graded ranges of molecular weight.

Hemodialysis

Artificial kidney machines have been developed that make use of dialysis to purify the blood of persons whose kidneys have ceased to function. Known as hemodialysis, this procedure has saved the lives of many persons suffering from renal failure. In such machines, blood is circulated on one side of a semipermeable membrane (often cellophane) while a special dialysis fluid is circulated on the other side. The dialysis fluid must be a solution that closely matches the chemical composition of the blood. Metabolic waste products such as urea and creatinine diffuse through the membrane into the dialysis fluid and are discarded, while loss by diffusion of substances necessary to the body (such as sodium chloride) is prevented by their presence in the dialysis fluid.

In peritoneal hemodialysis, the dialysis fluid is introduced into the abdominal cavity. Waste products leach from the blood vessels into the fluid, which is later drained from the patient. Home peritoneal dialysis machines that release patients from dependence on hospital dialysis (usually three 4-hr visits weekly) have been available since the 1980s. See diffusion.

or hemodialysis

Process of removing blood from a patient with kidney failure, purifying it with a hemodialyzer (artificial kidney), and returning it to the bloodstream. Many substances (including urea and inorganic salts) in the blood pass through a porous membrane in the machine into a sterile solution; particles such as blood cells and proteins are too large to pass. This process controls the acid-base balance of the blood and its content of water and dissolved materials.

Learn more about dialysis with a free trial on Britannica.com.

In medicine, dialysis (from Greek "dialusis", meaning dissolution, "dia", meaning through, and "lusis", meaning loosening) is primarily used to provide an artificial replacement for lost kidney function (renal replacement therapy) due to renal failure. Dialysis may be used for very sick patients who have suddenly but temporarily, lost their kidney function (acute renal failure) or for quite stable patients who have permanently lost their kidney function (stage 5 chronic kidney disease). When healthy, the kidneys maintain the body's internal equilibrium of water and minerals (sodium, potassium, chloride, calcium, phosphorus, magnesium, sulfate) and the kidneys remove from the blood the daily metabolic load of fixed hydrogen ions. The kidneys also function as a part of the endocrine system producing erythropoietin and 1,25-dihydroxycholecalciferol (calcitriol). Dialysis is an imperfect treatment to replace kidney function because it does not correct the endocrine functions of the kidney. Dialysis treatments replace some of these functions through the diffusion (waste removal) and convection (fluid removal).

Principle

Dialysis works, on the principles of the diffusion of solutes and convection of fluid across a semi-permeable membrane. Blood flows by one side of a semi-permeable membrane, and a dialysate or fluid flows by the opposite side. Smaller solutes and fluid pass through the membrane. The blood flows in one direction and the dialysate flows in the opposite. The concentrations of undesired solutes (for example potassium, calcium, and urea) are high in the blood, but low or absent in the dialysis solution and constant replacement of the dialysate ensures that the concentration of undesired solutes is kept low on this side of the membrane. The dialysis solution has levels of minerals like potassium and calcium that are similar to their natural concentration in healthy blood. For another solute, bicarbonate, dialysis solution level is set at a slightly higher level than in normal blood, to encourage diffusion of bicarbonate into the blood, to neutralise the metabolic acidosis that is often present in these patients.

Types

There are two primary types of dialysis, hemodialysis and peritoneal dialysis, and a third investigational type, intestinal dialysis.

Hemodialysis

In hemodialysis, the patient's blood is pumped through the blood compartment of a dialyzer, exposing it to a semipermeable membrane. The cleansed blood is then returned via the circuit back to the body. Ultrafiltration occurs by increasing the hydrostatic pressure across the dialyzer membrane. This usually is done by applying a negative pressure to the dialysate compartment of the dialyzer. This pressure gradient causes water and dissolved solutes to move from blood to dialysate, and allows removal of several litres of excess fluid during a typical 3 to 5 hour treatment. In the US, hemodialysis treatments are typically given in a dialysis center three times per week (due in the US to Medicare reimbursement rules), however, as of 2007 over 2,000 people in the US are dialyzing at home more frequently for various treatment lengths. Studies have demonstrated the clinical benefits of dialyzing 5 to 7 times a week, for 6 to 8 hours. These frequent long treatments are often done at home, while sleeping but home dialysis is a flexible modality and schedules can be changed day to day, week to week. In general, studies have shown that both increased treatment length and frequency are clinically beneficial.

Peritoneal dialysis

In peritoneal dialysis, a sterile solution containing minerals and glucose is run through a tube into the peritoneal cavity, the abdominal body cavity around the intestine, where the peritoneal membrane acts as a semipermeable membrane. The dialysate is left there for a period of time to absorb waste products, and then it is drained out through the tube and discarded. This cycle or "exchange" is normally repeated 4-5 times during the day, (sometimes more often overnight with an automated system). Ultrafiltration occurs via osmosis; the dialysis solution used contains a high concentration of glucose, and the resulting osmotic pressure causes fluid to move from the blood into the dialysate. As a result, more fluid is drained than was instilled. Peritoneal dialysis is less efficient than hemodialysis, but because it is carried out for a longer period of time the net effect in terms of removal of waste products and of salt and water are similar to hemodialysis. Peritoneal dialysis is carried out at home by the patient and it requires motivation. Although support is helpful, it is not essential. It does free patients from the routine of having to go to a dialysis clinic on a fixed schedule multiple times per week, and it can be done while travelling with a minimum of specialized equipment.

Hemofiltration

Hemofiltration is a similar treatment to hemodialysis, but it makes use of a different principle. The blood is pumped through a dialyzer or "hemofilter" as in dialysis, but no dialysate is used. A pressure gradient is applied; as a result, water moves across the very permeable membrane rapidly, facilitating the transport of dissolved substances, importantly ones with large molecular weights, which are cleared less well by hemodialysis. Salts and water lost from the blood during this process are replaced with a "substitution fluid" that is infused into the extracorporeal circuit during the treatment. Hemodiafiltration is a term used to describe several methods of combining hemodialysis and hemofiltration in one process.

Intestinal dialysis

In intestinal dialysis, the diet is supplemented with soluble fibres such as acacia fibre, which is digested by bacteria in the colon. This bacterial growth increases the amount of nitrogen that is eliminated in fecal waste. An alternative approach utilizes the ingestion of 1 to 1.5 liters of non-absorbable solutions of polyethylene glycol or mannitol every fourth hour.

Starting indications

The decision to initiate dialysis or hemofiltration in patients with renal failure can depend on several factors, which can be divided into acute or chronic indications.

  • Acute indications for dialysis/hemofiltration:

#Hyperkalemia
#Metabolic acidosis
#Fluid overload (which usually manifests as pulmonary edema)
#Uremic Serositis complications, such as uremic pericarditis and uremic encephalopathy
#And in patients without renal failure, acute poisoning with a dialysable drug, such as lithium, or aspirin

  • Chronic indications for dialysis:

#Symptomatic renal failure
#Low glomerular filtration rate (GFR) (RRT often recommended to commence at a GFR of less than 10-15 mls/min/1.73m2)
#Difficulty in medically controlling serum phosphorus or anaemia when the GFR is very low

See also

References

External links

Search another word or see dialysison Dictionary | Thesaurus |Spanish
Copyright © 2014 Dictionary.com, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature
FAVORITES
RECENT

;