Definitions

coversed sine

List of trigonometric identities

In mathematics, trigonometric identities are equalities that involve trigonometric functions that are true for every single value of the occurring variables. These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common trick involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

Notation

To avoid the confusion caused by the ambiguity of sin−1(x), the reciprocals and inverses of trigonometric functions are often displayed as in this table. In representing the cosecant function, the longer form 'cosec' is sometimes used in place of 'csc'.

Function Inverse function Reciprocal Inverse reciprocal
sine sin arcsine arcsin cosecant csc arccosecant arccsc
cosine cos arccosine arccos secant sec arcsecant arcsec
tangent tan arctangent arctan cotangent cot arccotangent arccot

Different angular measures can be appropriate in different situations. This table shows some of the more common systems. Radians is the default angular measure and is the one you use if you use the exponential definitions. All angular measures are unitless.

Degrees 30 45 60 90 120 180 270 360
Radians pi/6 pi/4 pi/3 pi/2 2pi/3 pi 3pi/2 2pi
Grads 33 ⅓ 50 66 ⅔ 100 133 ⅓ 200 300 400

Basic relationships

Pythagorean trigonometric identity sin^2 theta + cos^2 theta = 1,
Ratio identity tan theta = frac{sin theta}{cos theta}
From the two identities above, the following table can be extrapolated. Note however that these conversion equations may not provide the correct sign (+ or −). For example, if sin θ = 1/2, the conversion in the table indicates that scriptstylecostheta,=,sqrt{1 - sin^2theta} = sqrt{3}/2, though it is possible that scriptstylecostheta ,=, -sqrt{3}/2. More information would be needed about which quadrant θ lies in to determine a single, exact answer.
Each trigonometric function in terms of the other five.
Function sin cos tan csc sec cot
sin theta = sin theta sqrt{1 - cos^2theta} frac{tantheta}{sqrt{1 + tan^2theta}} frac{1}{csc theta} frac{sqrt{sec^2 theta - 1}}{sec theta} frac{1}{sqrt{1+cot^2theta}}
cos theta = sqrt{1 - sin^2theta} cos theta frac{1}{sqrt{1 + tan^2 theta}} frac{sqrt{csc^2theta - 1}}{csc theta} frac{1}{sec theta} frac{cot theta}{sqrt{1 + cot^2 theta}}
tan theta = frac{sintheta}{sqrt{1 - sin^2theta}} frac{sqrt{1 - cos^2theta}}{cos theta} tan theta frac{1}{sqrt{csc^2theta - 1}} sqrt{sec^2theta - 1} frac{1}{cot theta}
csc theta = {1 over sin theta} {1 over sqrt{1 - cos^2 theta}} {sqrt{1 + tan^2theta} over tan theta} csc theta {sec theta over sqrt{sec^2theta - 1}} sqrt{1 + cot^2 theta}
sec theta = {1 over sqrt{1 - sin^2theta}} {1 over cos theta} sqrt{1 + tan^2theta} {csctheta over sqrt{csc^2theta - 1}} sectheta {sqrt{1 + cot^2theta} over cot theta}
cot theta = {sqrt{1 - sin^2theta} over sin theta} {cos theta over sqrt{1 - cos^2theta}} {1 over tantheta} sqrt{csc^2theta - 1} {1 over sqrt{sec^2theta - 1}} cottheta

Historic shorthands

Rarely used today, the versine, coversine, haversine, and exsecant have been defined as below and used in navigation, for example the haversine formula was used to calculate the distance between two points on a sphere.

Name(s) Abbreviation(s) Value
versed sine
versine
textrm{versin} , theta textrm{vers} , theta 1 - cos theta ,
coversed sine
coversine
textrm{coversin} , theta textrm{cover} , theta 1 - sin theta ,
haversed sine
haversine
textrm{haversin} , theta
textrm{hav} , theta
tfrac{1}{2} textrm{versin} theta ,
hacoversed sine
hacoversine
cohaversine
havercosine
textrm{hacoversin} , theta
textrm{hacov} , theta
tfrac{1}{2} textrm{coversin} theta ,
exsecant textrm{exsec} , theta , sec theta - 1 ,
excosecant textrm{excsc} , theta , csc theta - 1 ,

Symmetry, shifts, and periodicity

By examining the unit circle, the following properties of the trigonometric functions can be established.

Symmetry

When the trigonometric functions are reflected from certain values of theta, The result is often one of the other trigonometric functions. This leads to the following identities:

Reflected in theta=0 Reflected in theta= pi/2
(co-function identities)
Reflected in theta= pi
begin{align} sin(0-theta) &= -sin theta cos(0-theta) &= +cos theta tan(0-theta) &= -tan theta csc(0-theta) &= -csc theta sec(0-theta) &= +sec theta cot(0-theta) &= -cot theta end{align} begin{align} sin(tfrac{pi}{2} - theta) &= +cos theta cos(tfrac{pi}{2} - theta) &= +sin theta tan(tfrac{pi}{2} - theta) &= +cot theta csc(tfrac{pi}{2} - theta) &= +sec theta sec(tfrac{pi}{2} - theta) &= +csc theta cot(tfrac{pi}{2} - theta) &= +tan theta end{align} begin{align} sin(pi - theta) &= +sin theta cos(pi - theta) &= -cos theta tan(pi - theta) &= -tan theta csc(pi - theta) &= +csc theta sec(pi - theta) &= -sec theta cot(pi - theta) &= -cot theta end{align}

Shifts and periodicity

By shifting the function round by certain angles, it is often possible to find different trigonometric functions that express the result more simply. Some examples of this are shown by shifting functions round by π/2, π and 2π radians. Because the periods of these functions are either π or 2π, there are cases where the new function is exactly the same as the old function without the shift.

Shift by π/2 Shift by π
Period for tan and cot
Shift by 2π
Period for sin, cos, csc and sec
begin{align} sin(theta + tfrac{pi}{2}) &= +cos theta cos(theta + tfrac{pi}{2}) &= -sin theta tan(theta + tfrac{pi}{2}) &= -cot theta csc(theta + tfrac{pi}{2}) &= +sec theta sec(theta + tfrac{pi}{2}) &= -csc theta cot(theta + tfrac{pi}{2}) &= -tan theta end{align} begin{align} sin(theta + pi) &= -sin theta cos(theta + pi) &= -cos theta tan(theta + pi) &= +tan theta csc(theta + pi) &= -csc theta sec(theta + pi) &= -sec theta cot(theta + pi) &= +cot theta end{align} begin{align} sin(theta + 2pi) &= +sin theta cos(theta + 2pi) &= +cos theta tan(theta + 2pi) &= +tan theta csc(theta + 2pi) &= +csc theta sec(theta + 2pi) &= +sec theta cot(theta + 2pi) &= +cot theta end{align}

Angle sum and difference identities

These are also known as the addition and subtraction theorems or formulæ. The quickest way to prove these is Euler's formula.

Sine sin(alpha pm beta) = sin alpha cos beta pm cos alpha sin beta , Note: From plus-minus sign.
x pm y = a pm b Rightarrow x + y = a + b mbox{or} x - y = a - b

x pm y = a mp b Rightarrow x + y = a - b mbox{or} x - y = a + b
Cosine cos(alpha pm beta) = cos alpha cos beta mp sin alpha sin beta,
Tangent tan(alpha pm beta) = frac{tan alpha pm tan beta}{1 mp tan alpha tan beta}

Matrix form

The sum and difference formulæ for sine and cosine can be written in matrix form, thus:

left[begin{matrix} cosalpha & -sinalpha sinalpha & cosalpha end{matrix}right] left[begin{matrix}cosbeta & -sinbeta sinbeta & cosbetaend{matrix}right] = left[begin{matrix}cos(alpha+beta) & -sin(alpha+beta) sin(alpha+beta) & cos(alpha+beta) end{matrix}right].

Sines and cosines of sums of infinitely many terms

sinleft(sum_{i=1}^infty theta_iright)
=sum_{mathrm{odd} k ge 1} (-1)^{(k-1)/2} sum_{begin{smallmatrix} A subseteq {,1,2,3,dots,} left|Aright| = kend{smallmatrix}} left(prod_{i in A} sintheta_i prod_{i not in A} costheta_iright)

cosleft(sum_{i=1}^infty theta_iright)
=sum_{mathrm{even} k ge 0} ~ (-1)^{k/2} ~~ sum_{begin{smallmatrix} A subseteq {,1,2,3,dots,} left|Aright| = kend{smallmatrix}} left(prod_{i in A} sintheta_i prod_{i not in A} costheta_iright)

In these two identities an asymmetry appears that is not seen in the case of sums of finitely many terms: in each product, there are only finitely many sine factors and cofinitely many cosine factors.

If only finitely many of the terms θi are nonzero, then only finitely many of the terms on the right side will be nonzero because sine factors will vanish, and in each term, all but finitely many of the cosine factors will be unity.

Tangents of sums of finitely many terms

Let xi = tan(θi ), for i = 1, ..., n. Let ek be the kth-degree elementary symmetric polynomial in the variables xi, i = 1, ..., n, k = 0, ..., n. Then

tan(theta_1+cdots+theta_n) = frac{e_1 - e_3 + e_5 -cdots}{e_0 - e_2 + e_4 - cdots},

the number of terms depending on n.

For example:

begin{align} tan(theta_1 + theta_2 + theta_3)
&{}= frac{e_1 - e_3}{e_0 - e_2} = frac{(x_1 + x_2 + x_3) - (x_1 x_2 x_3)}{ 1 - (x_1 x_2 + x_1 x_3 + x_2 x_3)}, tan(theta_1 + theta_2 + theta_3 + theta_4) &{}= frac{e_1 - e_3}{e_0 - e_2 + e_4} &{}= frac{(x_1 + x_2 + x_3 + x_4) - (x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4)}{ 1 - (x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4) + (x_1 x_2 x_3 x_4)},end{align}

and so on. The general case can be proved by mathematical induction.

Multiple-angle formulae

Tn is the nth Chebyshev polynomial cos ntheta =T_n (cos theta ),
Sn is the nth spread polynomial sin^2 ntheta = S_n (sin^2theta),
de Moivre's formula, i is the Imaginary unit cos ntheta +isin ntheta=(cos(theta)+isin(theta))^n ,

1+2cos(x) + 2cos(2x) + 2cos(3x) + cdots + 2cos(nx)
= frac{sinleft(left(n +frac{1}{2}right)xright)}{sin(x/2)}.

(This function of x is the Dirichlet kernel.)

Double-, triple-, and half-angle formulae

These can be shown by using either the sum and difference identities or the multiple-angle formulae.

Double-angle formulae
begin{align} sin 2theta &= 2 sin theta cos theta &= frac{2 tan theta} {1 + tan^2 theta} end{align}

begin{align} cos 2theta &= cos^2 theta - sin^2 theta &= 2 cos^2 theta - 1 &= 1 - 2 sin^2 theta &= frac{1 - tan^2 theta} {1 + tan^2 theta} end{align}

tan 2theta = frac{2 tan theta} {1 - tan^2 theta},

cot 2theta = frac{cot^2 theta - 1}{2 cot theta},
Triple-angle formulae
sin 3theta = 3 sin theta- 4 sin^3theta , cos 3theta = 4 cos^3theta - 3 cos theta , tan 3theta = frac{3 tantheta - tan^3theta}{1 - 3 tan^2theta} cot 3theta = frac{3 cottheta - cot^3theta}{1 - 3 cot^2theta}
Half-angle formulae
sin tfrac{theta}{2} = pm, sqrt{frac{1 - cos theta}{2}} cos tfrac{theta}{2} = pm, sqrt{frac{1 + costheta}{2}} begin{align} tan tfrac{theta}{2} &= csc theta - cot theta &= pm, sqrt{1 - cos theta over 1 + cos theta} &= frac{sin theta}{1 + cos theta} &= frac{1-cos theta}{sin theta} end{align} begin{align} cot tfrac{theta}{2} &= csc theta + cot theta &= pm, sqrt{1 + cos theta over 1 - cos theta} &= frac{sin theta}{1 - cos theta} &= frac{1 + cos theta}{sin theta} end{align}
See also Tangent half-angle formula.

Sine, cosine, and tangent of multiple angles

sin ntheta = sum_{k=0}^n binom{n}{k} cos^k theta,sin^{n-k} theta,sinleft(frac{1}{2}(n-k)piright)

cos ntheta = sum_{k=0}^n binom{n}{k} cos^k theta,sin^{n-k} theta,cosleft(frac{1}{2}(n-k)piright)

tan  can be written in terms of tan θ using the recurrence relation:

tan,(n{+}1)theta = frac{tan ntheta + tan theta}{1 - tan ntheta,tan theta}.

cot  can be written in terms of cot θ using the recurrence relation:

cot,(n{+}1)theta = frac{cot ntheta,cot theta - 1}{cot ntheta + cot theta}.

Tangent of an average

tanleft(frac{alpha+beta}{2} right)
= frac{sinalpha + sinbeta}{cosalpha + cosbeta} = -,frac{cosalpha - cosbeta}{sinalpha - sinbeta}

Setting either α or β to 0 gives the usual tangent half-angle formulæ.

Euler's infinite product

cosleft({theta over 2}right) cdot cosleft({theta over 4}right)
cdot cosleft({theta over 8}right)cdots = prod_{n=1}^infty cosleft({theta over 2^n}right) = {sin(theta)over theta}.

Power-reduction formulae

Obtained by solving the second and third versions of the cosine double-angle formula.

Sine Cosine Other
sin^2theta = frac{1 - cos 2theta}{2} cos^2theta = frac{1 + cos 2theta}{2} sin^2theta cos^2theta = frac{1 - cos 4theta}{8}
sin^3theta = frac{3 sintheta - sin 3theta}{4} cos^3theta = frac{3 costheta + cos 3theta}{4} sin^3theta cos^3theta = frac{3sin 2theta - sin 6theta}{32}
sin^4theta = frac{3 - 4 cos 2theta + cos 4theta}{8} cos^4theta = frac{3 + 4 cos 2theta + cos 4theta}{8} sin^4theta cos^4theta = frac{3-4cos 4theta + cos 8theta}{128}
sin^5theta = frac{10 sintheta - 5 sin 3theta + sin 5theta}{16} cos^5theta = frac{10 costheta + 5 cos 3theta + cos 5theta}{16} sin^5theta cos^5theta = frac{10sin 2theta - 5sin 6theta + sin 10theta}{512}

and in general terms of powers of or the following is true, and can be deduced using De Moivre's formula, Euler's formula and binomial expansion.

Cosine Sine
mbox{if }nmbox{ is odd} cos^ntheta = frac{2}{2^n} sum_{k=0}^{frac{n-1}{2}} binom{n}{k} cos{(n-2k)theta} sin^ntheta = frac{2}{2^n} sum_{k=0}^{frac{n-1}{2}} (-1)^{(frac{n-1}{2}-k)} binom{n}{k} sin{(n-2k)theta}
mbox{if }nmbox{ is even} cos^ntheta = frac{1}{2^n} binom{n}{frac{n}{2}} + frac{2}{2^n} sum_{k=0}^{frac{n}{2}-1} binom{n}{k} cos{(n-2k)theta} sin^ntheta = frac{1}{2^n} binom{n}{frac{n}{2}} + frac{2}{2^n} sum_{k=0}^{frac{n}{2}-1} (-1)^{(frac{n}{2}-k)} binom{n}{k} cos{(n-2k)theta}

Product-to-sum and sum-to-product identities

The product-to-sum identities can be proven by expanding their right-hand sides using the angle addition theorems. See beat frequency for an application of the sum-to-product formulæ.

Product-to-sum
cos theta cos varphi = {cos(theta - varphi) + cos(theta + varphi) over 2}
sin theta sin varphi = {cos(theta - varphi) - cos(theta + varphi) over 2}
sin theta cos varphi = {sin(theta + varphi) + sin(theta - varphi) over 2}
cos theta sin varphi = {sin(theta + varphi) - sin(theta - varphi) over 2}
Sum-to-product
sin theta + sin varphi = 2 sinleft(frac{theta + varphi}{2} right) cosleft(frac{theta - varphi}{2} right)
cos theta + cos varphi = 2 cosleft(frac{theta + varphi} {2} right) cosleft(frac{theta - varphi}{2} right)
cos theta - cos varphi = -2sinleft({theta + varphi over 2}right) sinleft({theta - varphi over 2}right)
sin theta - sin varphi = 2 cosleft({theta + varphi over 2}right) sinleft({theta - varphiover 2}right) ;

Other related identities

If x, y, and z are the three angles of any triangle, or in other words

mbox{if }x + y + z = pi = mbox{half circle,},

mbox{then }tan(x) + tan(y) + tan(z) = tan(x)tan(y)tan(z).,

(If any of x, y, z is a right angle, one should take both sides to be ∞. This is neither +∞ nor −∞; for present purposes it makes sense to add just one point at infinity to the real line, that is approached by tan(θ) as tan(θ) either increases through positive values or decreases through negative values. This is a one-point compactification of the real line.)

mbox{If }x + y + z = pi = mbox{half circle,},

mbox{then }sin(2x) + sin(2y) + sin(2z) = 4sin(x)sin(y)sin(z).,

Ptolemy's theorem

mbox{If }w + x + y + z = pi = mbox{half circle,} ,

begin{align} mbox{then }
& sin(w + x)sin(x + y) &{} = sin(x + y)sin(y + z) &{} = sin(y + z)sin(z + w) &{} = sin(z + w)sin(w + x) = sin(w)sin(y) + sin(x)sin(z). end{align}

(The first three equalities are trivial; the fourth is the substance of this identity.) Essentially this is Ptolemy's theorem adapted to the language of trigonometry.

Linear combinations

For some purposes it is important to know that any linear combination of sine waves of the same period but different phase shifts is also a sine wave with the same period, but a different phase shift. In the case of a linear combination of a sine and cosine wave (which is just a sine wave with a phase shift of π/2), we have

asin x+bcos x=sqrt{a^2+b^2}cdotsin(x+varphi),

where

varphi = arcsin left(frac{b}{sqrt{a^2+b^2}}right) + begin{cases} 0 & text{if }a ge 0, pi & text{if }a < 0, end{cases}

or equivalently

varphi = arctan left(frac{b}{a}right) + begin{cases}
0 & text{if }a ge 0, pi & text{if }a < 0. end{cases}

More generally, for an arbitrary phase shift, we have

asin x+bsin(x+alpha)= c sin(x+beta),

where

c = sqrt{a^2 + b^2 + 2abcos alpha},,

and

beta = arctan left(frac{bsin alpha}{a + bcos alpha}right).

Other sums of trigonometric functions

Sum of sines and cosines with arguments in arithmetic progression:

sin{varphi} + sin{(varphi + alpha)} + sin{(varphi + 2alpha)} +
cdots + sin{(varphi + nalpha)}=frac{sin{left(frac{(n+1) alpha}{2}right)} cdot sin{(varphi + frac{n alpha}{2})}}{sin{frac{alpha}{2}}}.
cos{varphi} + cos{(varphi + alpha)} + cos{(varphi + 2alpha)} +
cdots + cos{(varphi + nalpha)}=frac{sin{left(frac{(n+1) alpha}{2}right)} cdot cos{(varphi + frac{n alpha}{2})}}{sin{frac{alpha}{2}}}.

For any a and b:

a cos(x) + b sin(x) = sqrt{ a^2 + b^2 } cos(x - operatorname{atan2},(b,a)) ;
where atan2(y, x) is the generalization of arctan(y/x) which covers the entire circular range.

tan(x) + sec(x) = tanleft({x over 2} + {pi over 4}right).
The above identity is sometimes convenient to know when thinking about the Gudermannian function, which relates the circular and hyperbolic trigonometric functions without resorting to complex numbers.

If x, y, and z are the three angles of any triangle, i.e. if x + y + z = π, then

cot(x)cot(y) + cot(y)cot(z) + cot(z)cot(x) = 1.,

Certain linear fractional transformations

If ƒ(x) is given by the linear fractional transformation

f(x) = frac{(cosalpha)x - sinalpha}{(sinalpha)x + cosalpha},

and similarly

g(x) = frac{(cosbeta)x - sinbeta}{(sinbeta)x + cosbeta},

then

f(g(x)) = g(f(x))
= frac{(cos(alpha+beta))x - sin(alpha+beta)}{(sin(alpha+beta))x + cos(alpha+beta)}.

More tersely stated, if for all α we let ƒα be what we called ƒ above, then

f_alpha circ f_beta = f_{alpha+beta}. ,

If x is the slope of a line, then ƒ(x) is the slope of its rotation through an angle of −α.

Inverse trigonometric functions

arcsin(x)+arccos(x)=pi/2;

arctan(x)+arccot(x)=pi/2.;

arctan(x)+arctan(1/x)=left{begin{matrix} pi/2, & mbox{if }x > 0 -pi/2, & mbox{if }x < 0 end{matrix}right.

Compositions of trig and inverse trig functions

sin[arccos(x)]=sqrt{1-x^2} , tan[arcsin (x)]=frac{x}{sqrt{1 - x^2}}
sin[arctan(x)]=frac{x}{sqrt{1+x^2}} tan[arccos (x)]=frac{sqrt{1 - x^2}}{x}
cos[arctan(x)]=frac{1}{sqrt{1+x^2}} cot[arcsin (x)]=frac{sqrt{1 - x^2}}{x}
cos[arcsin(x)]=sqrt{1-x^2} , cot[arccos (x)]=frac{x}{sqrt{1 - x^2}}

Relation to the complex exponential function

e^{ix} = cos(x) + isin(x), (Euler's formula),

e^{-ix} = cos(-x) + isin(-x) = cos(x) - isin(x),

e^{ipi} = -1,

cos(x) = frac{e^{ix} + e^{-ix}}{2} ;

sin(x) = frac{e^{ix} - e^{-ix}}{2i} ;

and hence the corollary:

tan(x) = frac{e^{ix} - e^{-ix}}{i({e^{ix} + e^{-ix}})}; = frac{sin(x)}{cos(x)}

where i^2 = -1.

Infinite product formula

For applications to special functions, the following infinite product formulæ for trigonometric functions are useful:
sin x = x prod_{n = 1}^inftyleft(1 - frac{x^2}{pi^2 n^2}right)

sinh x = x prod_{n = 1}^inftyleft(1 + frac{x^2}{pi^2 n^2}right)

frac{sin x}{x} = prod_{n = 1}^inftycosleft(frac{x}{2^n}right)
cos x = prod_{n = 1}^inftyleft(1 - frac{x^2}{pi^2(n - frac{1}{2})^2}right)

cosh x = prod_{n = 1}^inftyleft(1 + frac{x^2}{pi^2(n - frac{1}{2})^2}right)

Identities without variables

The curious identity

cos 20^circcdotcos 40^circcdotcos 80^circ=frac{1}{8}
is a special case of an identity that contains one variable:

prod_{j=0}^{k-1}cos(2^j x)=frac{sin(2^k x)}{2^ksin(x)}.

A similar-looking identity is

cosfrac{pi}{7}cosfrac{2pi}{7}cosfrac{3pi}{7} = frac{1}{8},

and in addition

sin 20^circcdotsin 40^circcdotsin 80^circ=frac{sqrt{3}}{8}.

The following is perhaps not as readily generalized to an identity containing variables (but see explanation below):

cos 24^circ+cos 48^circ+cos 96^circ+cos 168^circ=frac{1}{2}.

Degree measure ceases to be more felicitous than radian measure when we consider this identity with 21 in the denominators:

cosleft( frac{2pi}{21}right)
,+, cosleft(2cdotfrac{2pi}{21}right) ,+, cosleft(4cdotfrac{2pi}{21}right)
,+, cosleft(5cdotfrac{2pi}{21}right) ,+, cosleft(8cdotfrac{2pi}{21}right) ,+, cosleft(10cdotfrac{2pi}{21}right)=frac{1}{2}.

The factors 1, 2, 4, 5, 8, 10 may start to make the pattern clear: they are those integers less than 21/2 that are relatively prime to (or have no prime factors in common with) 21. The last several examples are corollaries of a basic fact about the irreducible cyclotomic polynomials: the cosines are the real parts of the zeroes of those polynomials; the sum of the zeroes is the Möbius function evaluated at (in the very last case above) 21; only half of the zeroes are present above. The two identities preceding this last one arise in the same fashion with 21 replaced by 10 and 15, respectively.

Computing π

An efficient way to compute π is based on the following identity without variables, due to Machin:

frac{pi}{4} = 4 arctanfrac{1}{5} - arctanfrac{1}{239}

or, alternatively, by using Euler's formula:

frac{pi}{4} = 5 arctanfrac{1}{7} + 2 arctanfrac{3}{79}.

A useful mnemonic for certain values of sines and cosines

For certain simple angles, the sines and cosines take the form scriptstylesqrt{n}/2 for 0 ≤ n ≤ 4, which makes them easy to remember.

begin{matrix} sin 0 & = & sin 0^circ & = & sqrt{0}/2 & = & cos 90^circ & = & cos left(frac {pi} {2} right) & = sqrt{0}/2 sin left(frac {pi} {6} right) & = & sin 30^circ & = & sqrt{1}/2 & = & cos 60^circ & = & cos left(frac {pi} {3} right) & = sqrt{1}/2 sin left(frac {pi} {4} right) & = & sin 45^circ & = & sqrt{2}/2 & = & cos 45^circ & = & cos left(frac {pi} {4} right) & = sqrt{2}/2 sin left(frac {pi} {3} right) & = & sin 60^circ & = & sqrt{3}/2 & = & cos 30^circ & = & cos left(frac {pi} {6} right) & = sqrt{3}/2 sin left(frac {pi} {2} right) & = & sin 90^circ & = & sqrt{4}/2 & = & cos 0^circ & = & cos 0 & = sqrt{4}/2 end{matrix}

Other interesting values

sin{frac{pi}{7}}=frac{sqrt{7}}{6}-
frac{sqrt{7}}{189} sum_{j=0}^{infty} frac{(3j+1)!}{189^j j!,(2j+2)!} !

sin{frac{pi}{18}}=
frac{1}{6} sum_{j=0}^{infty} frac{(3j)!}{27^j j!,(2j+1)!} !

With the golden ratio φ:

cos left(frac {pi} {5} right) = cos 36^circ={sqrt{5}+1 over 4} = varphi /2

sin left(frac {pi} {10} right) = sin 18^circ = {sqrt{5}-1 over 4} = {varphi - 1 over 2} = {1 over 2varphi}

Also see exact trigonometric constants.

Calculus

In calculus the relations stated below require angles to be measured in radians; the relations would become more complicated if angles were measured in another unit such as degrees. If the trigonometric functions are defined in terms of geometry, their derivatives can be found by verifying two limits. The first is:

lim_{xrightarrow 0}frac{sin x}{x}=1,

verified using the unit circle and squeeze theorem. It may be tempting to propose to use L'Hôpital's rule to establish this limit. However, if one uses this limit in order to prove that the derivative of the sine is the cosine, and then uses the fact that the derivative of the sine is the cosine in applying L'Hôpital's rule, one is reasoning circularly—a logical fallacy. The second limit is:

lim_{xrightarrow 0}frac{1-cos x }{x}=0,

verified using the identity tan(x/2) = (1 − cos x)/sin x. Having established these two limits, one can use the limit definition of the derivative and the addition theorems to show that (sin x)′ = cos x and (cos x)′ = −sin x. If the sine and cosine functions are defined by their Taylor series, then the derivatives can be found by differentiating the power series term-by-term.

{d over dx}sin x = cos x

The rest of the trigonometric functions can be differentiated using the above identities and the rules of differentiation:

begin{matrix} {d over dx} sin x =& cos x ,& {d over dx} arcsin x =& {1 over sqrt{1 - x^2} } {d over dx} cos x =& -sin x ,& {d over dx} arccos x =& {-1 over sqrt{1 - x^2}} {d over dx} tan x =& sec^2 x ,& {d over dx} arctan x =& { 1 over 1 + x^2} {d over dx} cot x =& -csc^2 x ,& {d over dx} arccot x =& {-1 over 1 + x^2} {d over dx} sec x =& tan x sec x ,& {d over dx} arcsec x =& { 1 over |x|sqrt{x^2 - 1}} {d over dx} csc x =& -csc x cot x ,& {d over dx} arccsc x =& {-1 over |x|sqrt{x^2 - 1}} end{matrix}

The integral identities can be found in "list of integrals of trigonometric functions". Some generic forms are listed below.

int{frac{du}{sqrt{a^{2}-u^{2}}}}=sin ^{-1}left(frac{u}{a} right)+C

int{frac{du}{a^{2}+u^{2}}}=frac{1}{a}tan ^{-1}left(frac{u}{a} right)+C

int{frac{du}{usqrt{u^{2}-a^{2}}}}=frac{1}{a}sec ^{-1}left| frac{u}{a} rightC

Implications

The fact that the differentiation of trigonometric functions (sine and cosine) results in linear combinations of the same two functions is of fundamental importance to many fields of mathematics, including differential equations and fourier transformations.

Exponential definitions

Function Inverse Function
sin theta = frac{e^{itheta} - e^{-itheta}}{2i} , arcsin x = -i ln left(ix + sqrt{1 - x^2}right) ,
cos theta = frac{e^{itheta} + e^{-itheta}}{2} , arccos x = -i ln left(x + sqrt{x^2 - 1}right) ,
tan theta = frac{e^{itheta} - e^{-itheta}}{i(e^{itheta} + e^{-itheta})} , arctan x = frac{i ln left(frac{i + x}{i - x}right)}{2} ,
csc theta = frac{2i}{e^{itheta} - e^{-itheta}} , arccsc x = -i ln left(tfrac{i}{x} + sqrt{1 - tfrac{1}{x^2}}right) ,
sec theta = frac{2}{e^{itheta} + e^{-itheta}} , arcsec x = -i ln left(tfrac{1}{x} + sqrt{1 - tfrac{i}{x^2}}right) ,
cot theta = frac{i(e^{itheta} + e^{-itheta})}{e^{itheta} - e^{-itheta}} , arccot x = frac{i ln left(frac{i - x}{i + x}right)}{2} ,
operatorname{cis} , theta = e^{itheta} , operatorname{arccis} , x = frac{ln x}{i} ,

Miscellaneous

Dirichlet kernel

The Dirichlet kernel Dn(x) is the function occurring on both sides of the next identity:

1+2cos(x)+2cos(2x)+2cos(3x)+cdots+2cos(nx) = frac{ sinleft[left(n+frac{1}{2}right)xrightrbrack }{ sinleft(frac{x}{2}right) }.

The convolution of any integrable function of period 2π with the Dirichlet kernel coincides with the function's nth-degree Fourier approximation. The same holds for any measure or generalized function.

Extension of half-angle formulae

If we set

t = tanleft(frac{x}{2}right),

then

sin(x) = frac{2t}{1 + t^2}text{ and }cos(x) = frac{1 - t^2}{1 + t^2}text{ and }e^{i x} = frac{1 + i t}{1 - i t}.

where eix is the same as cis(x).

This substitution of t for tan(x/2), with the consequent replacement of sin(x) by 2t/(1 + t2) and cos(x) by (1 − t2)/(1 + t2) is useful in calculus for converting rational functions in sin(x) and cos(x) to functions of t in order to find their antiderivatives. For more information see tangent half-angle formula.

See also

Notes

References

External links

Search another word or see coversed sineon Dictionary | Thesaurus |Spanish
Copyright © 2014 Dictionary.com, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature
FAVORITES
RECENT

;