Added to Favorites

Related Searches

Definitions

Nearby Words

In physics and geometry, the catenary is the theoretical shape of a hanging flexible chain or cable when supported at its ends and acted upon by a uniform gravitational force (its own weight) and in equilibrium. The curve has a U shape that is similar in appearance to the parabola, though it is a different curve.

In 1691, Leibniz, Christiaan Huygens, and Johann Bernoulli derived the equation in response to a challenge by Jakob Bernoulli. Huygens first used the term 'catenaria' in a letter to Leibniz in 1690, and David Gregory wrote a treatise on the catenary in 1690. However Thomas Jefferson is usually credited with the English word 'catenary'.

The application of the catenary to the construction of arches is ancient, as described below; the modern rediscovery and statement is due to Robert Hooke, who discovered it in the context of the rebuilding of St Paul's Cathedral, possibly having seen Huygen's work on the catenary. In 1671, Hooke announced to the Royal Society that he had solved the problem of the optimal shape of an arch, and in 1675 published an encrypted solution as a Latin anagram in an appendix to his Description of Helioscopes, where he wrote that he had found "a true mathematical and mechanical form of all manner of Arches for Building," He did not publish the solution of this anagram in his lifetime, but in 1705 his executor provided it as:

Ut pendet continuum flexile, sic stabit contiguum rigidum inversum.meaning

As hangs a flexible cable, so inverted, stand the touching pieces of an arch.

Euler proved in 1744 that the catenary is the curve which, when rotated about the x axis, gives the surface of minimum surface area (the catenoid) for the given bounding circle.

- $y\; =\; a\; ,\; cosh\; left\; (\{x\; over\; a\}\; right\; )\; =\; \{a\; over\; 2\}\; ,\; left\; (e^\{x/a\}\; +\; e^\{-x/a\}\; right\; )$,

where $cosh$ is the hyperbolic cosine function. The scaling factor $a$ can be interpreted as the ratio between the horizontal component of the tension on the chain (a constant) and the weight of the chain per unit of length.

The Whewell equation for the catenary is

- $tan\; varphi\; =\; frac\{s\}\{a\}$.

From this the Cesàro equation can be derived by differentiation:

- $kappa=frac\{a\}\{(s^2+a^2)\}$.

- $vec\{T\}(s+Delta\; s)-vec\{T\}(s)+vec\{G\}Delta\; s\; =\; vec\{0\}$.

- $frac\{dvec\{T\}\}\{ds\}\; +\; vec\{G\}\; =\; vec\{0\}$.

The flexibility of the chain implies that $vec\{T\}$ is parallel to the curve of the chain, so we may assume $vec\{T\}\; =\; tau\; vec\{u\}$ where $vec\{u\}$ is the unit tangent vector and $tau$ is a scalar function of s.

We assume the chain has constant mass per unit length $lambda$ and the only external force acting on the chain is that of a uniform gravitational field $vec\{g\}\; =\; (0,\; -g)$, so $vec\{G\}\; =\; (0,\; -lambda\; g)$ and

- $frac\{dvec\{T\}\}\{ds\}\; =\; (0,\; lambda\; g)$.

Integrating,

- $vec\{T\}\; =\; (c,\; lambda\; g\; s\; +\; c\text{'})$,

where $c$ and $c\text{'}$ are constants. By changing the point from which s is measured, we may take $c\text{'}\; =\; 0$, so

- $vec\{T\}\; =\; (c,\; lambda\; g\; s)$.

If $varphi$ is the tangential angle of the curve then $vec\{T\}$ is parallel to $(1,\; tan\; varphi)$ so

- $tan\; varphi\; =\; frac\{lambda\; g\; s\}\{c\}$.

Write $a\; =\; frac\{c\}\{lambda\; g\}$ to combine constants and obtain the Whewell equation for the curve,

- $tan\; varphi\; =\; frac\{s\}\{a\}$.

The derivation of the curve for an optimal arch is similar except that the forces of tension become forces of compression and everything is inverted.

In general, parametric equations can be obtained from a Whewell equation by integrating:

- $x\; =\; int\; cos\; varphi\; ,\; ds$

- $y\; =\; int\; sin\; varphi\; ,\; ds$

To find these integrals, make the substitution $tan\{varphi\}\; =\; sinh\; u$ (or $varphi\; =\; mbox\{gd\}\; u$ where $mbox\{gd\}$ is the Gudermannian function). Then $s\; =\; a\; sinh\; u$ and

- $x\; =\; int\; cos\; \{varphi\}\; ds\; =\; int\; mbox\{sech\}\; u\; ,\; a\; cosh\; u\; du\; =\; a\; int\; du\; =\; au\; +\; alpha$

- $y\; =\; int\; sin\; \{varphi\}\; ds\; =\; int\; tanh\; u\; ,\; a\; cosh\; u\; du\; =\; a\; int\; sinh\; u\; du\; =\; a\; cosh\; u\; +\; beta$.

We can eliminate u to obtain

- $y\; =\; a\; cosh\; frac\{x-alpha\}\{a\}\; +\; beta$

where $alpha$ and $beta$ are constants to be determined, along with $a$, by the boundary conditions of the problem. Usually these conditions include two points from which the chain is being suspended and the length of the chain.

Square wheels can roll perfectly smoothly if the road has evenly spaced bumps in the shape of a series of inverted catenary curves. The wheels can be any regular polygon save for a triangle, but one must use the correct catenary, corresponding correctly to the shape and dimensions of the wheels .

A charge in a uniform electric field moves along a catenary (which tends to a parabola if the charge velocity is much less than the speed of light c).

Free-hanging chains follow the curve of the hyperbolic function above, but suspension bridge chains or cables, which are tied to the bridge deck at uniform intervals, follow a parabolic curve, much as Galileo originally claimed (derivation).

When suspension bridges are constructed, the suspension cables initially sag as the catenaric function, before being tied to the deck below, and then gradually assume a parabolic curve as additional connecting cables are tied to connect the main suspension cables with the bridge deck below.

In antiquity, the curvature of the inverted catenary was intuitively discovered and found to lead to stable arches and vaults. A spectacular example remains in the Taq-i Kisra in Ctesiphon, which was once a great city of Mesopotamia. In ancient Greek and Roman cultures, the less efficient curvature of the circle was more commonly used in arches and vaults. The efficient curvature of inverted catenary was perhaps forgotten in Europe from the fall of Rome to the Middle-Ages and the Renaissance, where it was almost never used, although the pointed arch was perhaps a fortuitous approximation of it.

The Catalan architect Antoni Gaudí made extensive use of catenary shapes in most of his work. In order to find the best curvature for the arches and ribs that he desired to use in the crypt of the Church of Colònia Güell, Gaudí constructed inverted scale models made of numerous threads under tension to represent stones under compression. This technique worked well to solve angled columns, arches, and single-curvature vaults, but could not be used to solve the more complex, double-curvature vaults that he intended to use in the nave of the church of the Sagrada Familia. The idea that Gaudi used thread models to solve the nave of the Sagrada Familia is a common misconception, although it could have been used in the solution of the bell towers.

The Gateway Arch in Saint Louis, Missouri, United States follows the form of an inverted catenary. It is 630 feet wide at the base and 630 feet tall. The exact formula

- $y\; =\; -127.7\; ;\; textrm\{ft\}\; cdot\; cosh(\{x\; /\; 127.7\; ;\; textrm\{ft\}\})\; +\; 757.7\; ;\; textrm\{ft\}$

is displayed inside the arch.

In structural engineering a catenary shell is a structural form, usually made of concrete, that follows a catenary curve. The profile for the shell is obtained by using flexible material subjected to gravity, converting it into a rigid formwork for pouring the concrete and then using it as required, usually in an inverted manner.

A kiln, a kind of oven for firing pottery, may be made from firebricks with a body in the shape of a catenary arch, usually nearly as wide as it is high, with the ends closed off with a permanent wall in the back and a temporary wall in the front. The bricks (mortared with fireclay) are stacked upon a temporary form in the shape of an inverted catenary, which is removed upon completion. The form is designed with a simple length of light chain, whose shape is traced onto an end panel of the form, which is inverted for assembly. A particular advantage of this shape is that it does not tend to dismantle itself over repeated heating and cooling cycles — most other forms such as the vertical cylinder must be held together with steel bands.

Particularly with larger vessels, the catenary curve given by the weight of the rode presents a lower angle of pull on the anchor or mooring device. This assists the performance of the anchor and raises the level of force it will resist before dragging. With smaller vessels and in shallow water it is less effective.

The catenary curve in this context is only fully present in the anchoring system when the rode has been lifted clear of the seabed by the vessel's pull, as the seabed obviously affects its shape while it supports the chain or cable. There is also typically a section of rode above the water and thus unaffected by buoyancy, creating a slightly more complicated curve.

When a cable is subject to wind or water flows, the drag forces lead to more general shapes, since the forces are not distributed in the same way as the weight. A cable having radius $a$ and specific gravity $sigma$, and towed at speed $v$ in a medium (e.g., air or water) with density $rho\; \_\{0\}$, will have an $(x,y)$ position described by the following equations :

- $$

- $Tfrac=-rho\; \_\{0\}left(\{sigma\; -1\}right)\; pi\; a^\{2\}gcos$

- $$

- $frac=-sin\; phi\; .$

Here $T$ is the tension, $phi$ is the incident angle, $g=9.81\; \{m\}/\; \{s\}^\{2\}$, and $s$ is the cable scope. There are three drag coefficients: the normal drag coefficient $C\_\{D\}$ ($approx\; 1.5$ for a smooth cylindrical cable); the tangential drag coefficient $C\_\{T\}$ ($approx\; 0.0025$), and $C\_\{N\}$ ($=0.75C\_\{T\}$).

The system of equations has four equations and four unknowns: $T$, $phi$, $x$ and $y$, and is typically solved numerically.

Setting $frac=0$ leads to an equation for the critical angle:

- $$

If $pi\; C\_\{N\}<\{d\}sin\; phi\; math>,\; the\; formula\; for\; the\; critical\; angle\; becomes$

- $$

or

- $$

or

- $$

leading to the rule-of-thumb formula

- $$

- In railway engineering, a catenary structure consists of overhead lines used to deliver electricity to a railway locomotive, multiple unit, railcar, tram or trolleybus through a pantograph or a trolleypole. These structures consist of an upper structural wire in the form of a shallow catenary, short suspender wires, which may or may not contain insulators, and a lower conductive contact wire. By adjusting the tension in various elements the conductive wire is kept parallel to the centerline of the track, reducing the tendency of the pantograph or trolley to bounce or sway, which could cause a disengagement at high speed.
- In semi-rigid airships, a catenary curtain is a fabric and cable internal structure used to distribute the weight of the gondola across a large area of the ship's envelope.
- In conveyor systems, the catenary is the portion of the chain or belt underneath the conveyor that is traveling back to the start. It is the weight of the catenary that keeps tension in the chain or belt.

- "Catenary" at Encyclopédie des Formes Mathématiques Remarquables
- "Catenary" at Visual Dictionary of Special Plane Curves
- Hanging With Galileo - mathematical derivation of formula for suspended and free-hanging chains; interactive graphical demo of parabolic vs. hyperbolic suspensions.
- Catenary Demonstration Experiment - An easy way to demonstrate the Mathematical properties of a cosh using the hanging cable effect. Devised by Jonathan Lansey
- Horizontal Conveyor Arrangement - Diagrams of different horizontal conveyor layouts showing options for the catenary section both supported and unsupported
- Catenary curve derived - The shape of a catenary is derived, plus examples of a chain hanging between 2 points of unequal height, including C program to calculate the curve.
- Cable Sag Error Calculator - Calculates the deviation from a straight line of a catenary curve and provides derivation of the calculator and references.

Wikipedia, the free encyclopedia © 2001-2006 Wikipedia contributors (Disclaimer)

This article is licensed under the GNU Free Documentation License.

Last updated on Tuesday September 30, 2008 at 16:42:41 PDT (GMT -0700)

View this article at Wikipedia.org - Edit this article at Wikipedia.org - Donate to the Wikimedia Foundation

This article is licensed under the GNU Free Documentation License.

Last updated on Tuesday September 30, 2008 at 16:42:41 PDT (GMT -0700)

View this article at Wikipedia.org - Edit this article at Wikipedia.org - Donate to the Wikimedia Foundation

Copyright © 2015 Dictionary.com, LLC. All rights reserved.