Added to Favorites

Related Searches

Nearby Words

In physics, the Casimir effect and the Casimir-Polder force are physical forces arising from a quantized field. The typical example is of two uncharged metallic plates in a vacuum, placed a few micrometers apart, without any external electromagnetic field. In a classical description, the lack of an external field also means that there is no field between the plates, and no force would be measured between them. When this field is instead studied using quantum electrodynamics, it is seen that the plates do affect the virtual photons which constitute the field, and generate a net force—either an attraction or a repulsion depending on the specific arrangement of the two plates. This force has been measured, and is a striking example of an effect purely due to second quantization. (However, the treatment of boundary conditions in these calculations has led to some controversy.)

Dutch physicists Hendrik B. G. Casimir and Dirk Polder first proposed the existence of the force and formulated an experiment to detect it in 1948 while participating in research at Philips Research Labs. The classic form of the experiment, described above, successfully demonstrated the force to within 15% of the value predicted by the theory.

Because the strength of the force falls off rapidly with distance, it is only measurable when the distance between the objects is extremely small. On a submicrometre scale, this force becomes so strong that it becomes the dominant force between uncharged conductors. In fact, at separations of 10 nm—about 100 times the typical size of an atom—the Casimir effect produces the equivalent of 1 atmosphere of pressure (101.3 kPa), the precise value depending on surface geometry and other factors

Although the Casimir effect can be expressed in terms of virtual particles interacting with the objects, it is best described and more easily calculated in terms of the zero-point energy of a quantized field in the intervening space between the objects. In modern theoretical physics, the Casimir effect plays an important role in the chiral bag model of the nucleon; and in applied physics, it is becoming increasingly important in the development of the ever-smaller, miniaturised components of emerging microtechnologies and nanotechnologies.

The vacuum has, implicitly, all of the properties that a particle may have: spin, or polarization in the case of light, energy, and so on. On average, all of these properties cancel out: the vacuum is, after all, "empty" in this sense. One important exception is the vacuum energy or the vacuum expectation value of the energy. The quantization of a simple harmonic oscillator states that the lowest possible energy or zero-point energy that such an oscillator may have is

- $\{E\}\; =\; begin\{matrix\}\; frac\{1\}\{2\}\; end\{matrix\}\; hbar\; omega\; .$

Summing over all possible oscillators at all points in space gives an infinite quantity. To remove this infinity, one may argue that only differences in energy are physically measurable; this argument is the underpinning of the theory of renormalization. In all practical calculations, this is how the infinity is always handled. In a deeper sense, however, renormalization is unsatisfying, and the removal of this infinity presents a challenge in the search for a Theory of Everything. Currently there is no compelling explanation for how this infinity should be treated as essentially zero; a non-zero value is essentially the cosmological constant and any large value causes trouble in cosmology.

Consider, for example, the calculation of the vacuum expectation value of the electromagnetic field inside a metal cavity, such as, for example, a radar cavity or a microwave waveguide. In this case, the correct way to find the zero point energy of the field is to sum the energies of the standing waves of the cavity. To each and every possible standing wave corresponds an energy; say the energy of the nth standing wave is $E\_n$. The vacuum expectation value of the energy of the electromagnetic field in the cavity is then

- $langle\; E\; rangle\; =\; frac\{1\}\{2\}\; sum\_n\; E\_n$

with the sum running over all possible values of n enumerating the standing waves. The factor of 1/2 corresponds to the fact that the zero-point energies are being summed (it is the same 1/2 as appears in the equation $E=hbar\; omega/2$). Written in this way, this sum is clearly divergent; however, it can be used to create finite expressions.

In particular, one may ask how the zero point energy depends on the shape s of the cavity. Each energy level $E\_n$ depends on the shape, and so one should write $E\_n(s)$ for the energy level, and $langle\; E(s)\; rangle$ for the vacuum expectation value. At this point comes an important observation: the force at point p on the wall of the cavity is equal to the change in the vacuum energy if the shape s of the wall is perturbed a little bit, say by $delta\; s$, at point p. That is, one has

- $F(p)\; =\; -\; left.\; frac\{delta\; langle\; E(s)\; rangle\}\; \{delta\; s\}\; rightvert\_p,$

This value is finite in many practical calculations.

- $psi\_n(x,y,z,t)\; =\; e^\{-iomega\_nt\}\; e^\{ik\_xx+ik\_yy\}\; sin\; left(k\_n\; z\; right)$

where $psi$ stands for the electric component of the electromagnetic field, and, for brevity, the polarization and the magnetic components are ignored here. Here, $k\_x$ and $k\_y$ are the wave vectors in directions parallel to the plates, and

- $k\_n\; =\; frac\{npi\}\{a\}$

is the wave-vector perpendicular to the plates. Here, n is an integer, resulting from the requirement that ψ vanish on the metal plates. The energy of this wave is

- $omega\_n\; =\; c\; sqrt\{\{k\_x\}^2\; +\; \{k\_y\}^2\; +\; frac\{n^2pi^2\}\{a^2\}\}$

where c is the speed of light. The vacuum energy is then the sum over all possible excitation modes

- $langle\; E\; rangle\; =\; frac\{hbar\}\{2\}\; cdot\; 2$

where A is the area of the metal plates, and a factor of 2 is introduced for the two possible polarizations of the wave. This expression is clearly infinite, and to proceed with the calculation, it is convenient to introduce a regulator (discussed in greater detail below). The regulator will serve to make the expression finite, and in the end will be removed. The zeta-regulated version of the energy per unit-area of the plate is

- $frac\{langle\; E(s)\; rangle\}\{A\}\; =\; hbar$

In the end, the limit $sto\; 0$ is to be taken. Here s is just a complex number, not to be confused with the shape discussed previously. This integral/sum is finite for s real and larger than 3. The sum has a pole at s=3, but may be analytically continued to s=0, where the expression is finite. Expanding this, one gets

- $frac\{langle\; E(s)\; rangle\}\{A\}\; =$

where polar coordinates $q^2\; =\; k\_x^2+k\_y^2$ were introduced to turn the double integral into a single integral. The $q$ in front is the Jacobian, and the $2pi$ comes from the angular integration. The integral is easily performed, resulting in

- $frac\{langle\; E(s)\; rangle\}\{A\}\; =$

The sum may be understood to be the Riemann zeta function, and so one has

- $frac\{langle\; E\; rangle\}\{A\}\; =$

But $zeta(-3)=1/120$ and so one obtains

- $frac\{langle\; E\; rangle\}\{A\}\; =$

The Casimir force per unit area $F\_c\; /\; A$ for idealized, perfectly conducting plates with vacuum between them is

- $\{F\_c\; over\; A\}\; =\; -$

where

- $hbar$ (hbar, ℏ) is the reduced Planck constant,

- $c$ is the speed of light,

- $a$ is the distance between the two plates.

The force is negative, indicating that the force is attractive: by moving the two plates closer together, the energy is lowered. The presence of $hbar$ shows that the Casimir force per unit area $F\_c\; /\; A$ is very small, and that furthermore, the force is inherently of quantum-mechanical origin.

For boundaries at large separations, retardation effects give rise to a long-range interaction. For the case of two parallel plates composed of ideal metals in vacuum, the results reduce to Casimir’s.

One of the first experimental tests was conducted by Marcus Sparnaay at Philips in Eindhoven, in 1958, in a delicate and difficult experiment with parallel plates, obtaining results not in contradiction with the Casimir theory, but with large experimental errors.

The Casimir effect was measured more accurately in 1997 by Steve K. Lamoreaux of Los Alamos National Laboratory and by Umar Mohideen and Anushree Roy of the University of California at Riverside. In practice, rather than using two parallel plates, which would require phenomenally accurate alignment to ensure they were parallel, the experiments use one plate that is flat and another plate that is a part of a sphere with a large radius. In 2001, a group at the University of Padua finally succeeded in measuring the Casimir force between parallel plates using microresonators.

The heat kernel or exponentially regulated sum is

- $langle\; E(t)\; rangle\; =\; frac\{1\}\{2\}\; sum\_n\; hbar\; |omega\_n|$

where the limit $tto\; 0^+$ is taken in the end. The divergence of the sum is typically manifested as

- $langle\; E(t)\; rangle\; =\; frac\{C\}\{t^3\}\; +\; textrm\{finite\},$

for three-dimensional cavities. The infinite part of the sum is associated with the bulk constant C which does not depend on the shape of the cavity. The interesting part of the sum is the finite part, which is shape-dependent. The Gaussian regulator

- $langle\; E(t)\; rangle\; =\; frac\{1\}\{2\}\; sum\_n\; hbar\; |omega\_n|$

is better suited to numerical calculations because of its superior convergence properties, but is more difficult to use in theoretical calculations. Other, suitably smooth, regulators may be used as well. The zeta function regulator

- $langle\; E(s)\; rangle\; =\; frac\{1\}\{2\}\; sum\_n\; hbar\; |omega\_n|\; |omega\_n|^\{-s\}$

is completely unsuited for numerical calculations, but is quite useful in theoretical calculations. In particular, divergences show up as poles in the complex s plane, with the bulk divergence at s=4. This sum may be analytically continued past this pole, to obtain a finite part at s=0.

Not every cavity configuration necessarily leads to a finite part (the lack of a pole at s=0) or shape-independent infinite parts. In this case, it should be understood that additional physics has to be taken into account. In particular, at extremely large frequencies (above the plasma frequency), metals become transparent to photons (such as x-rays), and dielectrics show a frequency-dependent cutoff as well. This frequency dependence acts as a natural regulator. There are a variety of bulk effects in solid state physics, mathematically very similar to the Casimir effect, where the cutoff frequency comes into explicit play to keep expressions finite. (These are discussed in greater detail in Landau and Lifshitz, "Theory of Continuous Media".)

More interesting is the understanding that the sums over the energies of standing waves should be formally understood as sums over the eigenvalues of a Hamiltonian. This allows atomic and molecular effects, such as the van der Waals force, to be understood as a variation on the theme of the Casimir effect. Thus one considers the Hamiltonian of a system as a function of the arrangement of objects, such as atoms, in configuration space. The change in the zero-point energy as a function of changes of the configuration can be understood to result in forces acting between the objects.

In the chiral bag model of the nucleon, the Casimir energy plays an important role in showing the mass of the nucleon is independent of the bag radius. In addition, the spectral asymmetry is interpreted as a non-zero vacuum expectation value of the baryon number, cancelling the topological winding number of the pion field surrounding the nucleon.

Exotic matter with negative energy density is required to stabilize a wormhole. Morris, Thorne and Yurtsever pointed out that the quantum mechanics of the Casimir effect can be used to produce a locally mass-negative region of space-time, and suggested that negative effect could be used to stabilize a wormhole to allow faster than light travel. This was used in the novel Warp Speed by Travis S. Taylor and also in The Light of Other Days by Arthur C. Clarke and Stephen Baxter.

- Introductory
- Casimir effect description from University of California, Riverside's version of the Usenet physics FAQ
- A. Lambrecht, The Casimir effect: a force from nothing, Physics World, September 2002.
- Casimir effect on Astronomy Picture of the Day
- Physicists have 'solved' mystery of levitation Telegraph interviews Prof. Ulf Leonhardt and Dr Thomas Philbin
- Papers, books and lectures
- H. B. G. Casimir, and D. Polder, "The Influence of Retardation on the London-van der Waals Forces", Phys. Rev. 73, 360-372 (1948).
- H. B. G. Casimir, "On the attraction between two perfectly conducting plates" Proc. Kon. Nederland. Akad. Wetensch. B51, 793 (1948)
- S. K. Lamoreaux, " Demonstration of the Casimir Force in the 0.6 to 6 µm Range", Phys. Rev. Lett. 78, 5–8 (1997)
- M. Bordag, U. Mohideen, V.M. Mostepanenko, " New Developments in the Casimir Effect", Phys. Rep. 353, 1–205 (2001), arXiv (200+ page review paper.)
- Kimball A.Milton: "The Casimir effect", World Scientific, Singapore 2001,ISBN 981-02-4397-9
- G. Bressi, G. Carugno, R. Onofrio, G. Ruoso, " Measurement of the Casimir force between Parallel Metallic Surfaces", Phys. Rev. Lett. 88 041804 (2002)
- O. Kenneth, I. Klich, A. Mann and M. Revzen, Repulsive Casimir forces, Department of Physics, Technion - Israel Institute of Technology, Haifa, February 2002
- J. D. Barrow, " Much ado about nothing", (2005) Lecture at Gresham College. (Includes discussion of French naval analogy.)
- Barrow, John D. (2000).
*The book of nothing : vacuums, voids, and the latest ideas about the origins of the universe*. 1st American Ed., New York: Pantheon Books. ISBN 0-09-928845-1. (Also includes discussion of French naval analogy.) - Temperature dependence
- Measurements Recast Usual View of Elusive Force from NIST
- V.V. Nesterenko, G. Lambiase, G. Scarpetta, Calculation of the Casimir energy at zero and finite temperature: some recent results, arXiv:hep-th/0503100 v2 13 May 2005

- Casimir effect article search on arxiv.org
- G. Lang, The Casimir Force web site, 2002

Wikipedia, the free encyclopedia © 2001-2006 Wikipedia contributors (Disclaimer)

This article is licensed under the GNU Free Documentation License.

Last updated on Thursday October 09, 2008 at 21:45:26 PDT (GMT -0700)

View this article at Wikipedia.org - Edit this article at Wikipedia.org - Donate to the Wikimedia Foundation

This article is licensed under the GNU Free Documentation License.

Last updated on Thursday October 09, 2008 at 21:45:26 PDT (GMT -0700)

View this article at Wikipedia.org - Edit this article at Wikipedia.org - Donate to the Wikimedia Foundation

Copyright © 2014 Dictionary.com, LLC. All rights reserved.