Definitions

Trk A

Oncogene

[ong-kuh-jeen]
An oncogene is a protein encoding gene, which — when deregulated — participates in the onset and development of cancer. Genetic mutations resulting in the activation of oncogenes increase the chance that a normal cell will develop into a tumor cell. Oncogenes are figuratively thought to be in a perpetual tug-of-war with tumor suppressor genes which act to prevent DNA damage and keep the cell's activities under control. There is much evidence to support the notion that loss of tumor suppressors or gain of oncogenes can lead to cancer.

Many cells normally undergo an apoptosis program. In the presence of an activated oncogene, disorderly survival and proliferation can be observed. Most oncogenes require an additional step, such as mutations in another gene, or environmental factors such as viral infection, to cause cancer. Since the 1970s, dozens of oncogenes have been identified in human cancer. Many new cancer drugs target those DNA sequences and their products.

Proto-oncogene

A proto-oncogene is a normal gene that can become an oncogene due to mutations or increased expression. Proto-oncogenes code for proteins that help to regulate cell growth and differentiation. Proto-oncogenes are often involved in signal transduction and execution of mitogenic signals, usually through their protein products. Upon activation, a proto-oncogene (or its product) becomes a tumor inducing agent, an oncogene. Examples of proto-oncogenes include RAS, WNT, MYC, ERK and TRK.

Activation

The proto-oncogene can become an oncogene by a relatively small modification of its original function. There are three basic activation types:

  • A mutation within a proto-oncogene can cause a change in the protein structure, causing
  • An increase in protein concentration, caused by
    • an increase of protein expression (through misregulation)
    • an increase of protein stability, prolonging its existence and thus its activity in the cell
    • a gene duplication (one type of chromosome abnormality), resulting in an increased amount of protein in the cell
  • A chromosomal translocation (another type of chromosome abnormality), causing
    • an increased gene expression in the wrong cell type or at wrong times
    • the expression of a constitutively active hybrid protein. This type of aberration in a dividing stem cell in the bone marrow leads to adult leukemia

Mutations in microRNAs can lead to activation of oncogenes. New research indicates that small RNAs 21-25 nucleotides in length called microRNAs (miRNAs) can control expression of these genes by downregulating them.

Classification

There are several systems for classifying oncogenes, but there is not yet a widely accepted standard. They are sometimes grouped both spatially (moving from outside the cell inwards) and chronologically (parallelling the "normal" process of signal transduction). There are several categories that are commonly used:

Category Examples Description
Growth factors, or mitogens c-Sis Usually secreted by specialized cells to induce cell proliferation in themselves, nearby cells, or distant cells. An oncogene may cause a cell to secrete growth factors even though it does not normally do so. It will thereby induce its own uncontrolled proliferation (autocrine loop), and proliferation of neighboring cells. It may also cause production of growth hormones in other parts of the body.
Receptor tyrosine kinases epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), and vascular endothelial growth factor receptor (VEGFR), HER2/neu Kinases add phosphate groups to other proteins to turn them on or off. Receptor kinases add phosphate groups to receptor proteins at the surface of the cell (which receive protein signals from outside the cell and transmit them to the inside of the cell). Tyrosine kinases add phosphate groups to the amino acid tyrosine in the target protein. They can cause cancer by turning the receptor permanently on (constitutively), even without signals from outside the cell.
Cytoplasmic tyrosine kinases Src-family, Syk-ZAP-70 family, and BTK family of tyrosine kinases, the Abl gene in CML - Philadelphia chromosome -
Cytoplasmic Serine/threonine kinases and their regulatory subunits Raf kinase, and cyclin-dependent kinases (through overexpression). -
Regulatory GTPases Ras protein -
Transcription factors myc gene -

Conversion of proto-oncogenes

There are two mechanisms by which proto-oncogenes can be converted to cellular oncogenes:

Quantitative: Tumor formation is induced by an increase in the absolute number of proto-oncogene products or by its production in inappropriate cell types.

Qualitative: Conversion from proto-oncogene to transforming gene (c-onc) with changes in the nucleotide sequence which responsible for the acquisition of the new properties.

History

The first oncogene was discovered in 1970 and was termed src (pronounced sarc as in sarcoma). Src was in fact first discovered as an oncogene in a chicken retrovirus. Experiments performed by Dr G. Steve Martin of the University of California, Berkeley demonstrated that the SRC was indeed the oncogene of the virus.

In 1976 Drs. J. Michael Bishop and Harold E. Varmus of the University of California, San Francisco demonstrated that oncogenes were defective proto-oncogenes, found in many organisms including humans. For this discovery Bishop and Varmus were awarded the Nobel Prize in 1989.

See also

References

Search another word or see Trk Aon Dictionary | Thesaurus |Spanish
Copyright © 2015 Dictionary.com, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature