Normal modal logic

Normal modal logic

In logic, a normal modal logic is a set L of modal formulas such that L contains:

  • All propositional tautologies;
  • All instances of the Kripke schema: Box(Ato B)to(Box AtoBox B)

and it is closed under:

  • Detachment rule (Modus Ponens): from A and AB infer B;
  • Necessitation rule: from A infer Box A.

The smallest logic satisfying the above conditions is called K. Most modal logics commonly used nowadays (in terms of having philosophical motivations), e.g. C. I. Lewis's S4 and S5, are extensions of K. However a number of deontic and epistemic logics, for example, are non-normal, often because they give up the Kripke schema.

Search another word or see Normal modal logicon Dictionary | Thesaurus |Spanish
Copyright © 2015, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature