Definitions
Nearby Words

# Machin-like formula

In mathematics, Machin-like formulas are a class of identities involving π = 3.14159... that generalize John Machin's formula from 1706:

$frac\left\{pi\right\}\left\{4\right\} = 4 arctanfrac\left\{1\right\}\left\{5\right\} - arctanfrac\left\{1\right\}\left\{239\right\},$

which he used along with the Taylor series expansion of arctan to compute π to 100 decimal places.

Machin-like formulas have the form

$frac\left\{pi\right\}\left\{4\right\} = sum_\left\{n\right\}^N a_n arctanfrac\left\{1\right\}\left\{b_n\right\}$

with $a_n$ and $b_n$ integers.

The same method is still among the most efficient known for computing a large number of digits of π with digital computers.

## Derivation

To understand where this formula comes from, start with following basic ideas:

$frac\left\{pi\right\}\left\{4\right\} = arctan\left(1\right)$
$tan\left(2arctan\left(a\right)\right) = frac\left\{2 a\right\} \left\{ 1 - a ^ 2\right\}$ (tangent double angle identity)
$tan\left(a-arctan\left(b\right)\right) = frac\left\{tan\left(a\right)-b\right\} \left\{ 1 + tan\left(a\right) b\right\}$ (tangent difference identity)
$frac\left\{pi\right\}\left\{16\right\} = 0.196349dots$ (approximately)
$arctanleft\left(frac\left\{1\right\}\left\{5\right\}right\right) = arctan\left(0.2\right) = 0.197395dots$ (approximately)

In other words, for small numbers, arctangent is to a good approximation just the identity function. This leads to the possibility that a number $q$ can be found such that

$frac\left\{pi\right\}\left\{16\right\} = arctan\left(frac\left\{1\right\}\left\{5\right\}\right) - frac\left\{1\right\}\left\{4\right\} arctan\left(q\right).$

Using elementary algebra, we can isolate $q$:

$q = tanleft\left(4 arctanleft\left(frac\left\{1\right\}\left\{5\right\}right\right) - frac\left\{pi\right\}\left\{4\right\}right\right)$

Using the identities above, we substitute arctan(1) for π/4 and then expand the result.

$q = frac\left\{tanleft\left(4 arctanleft\left(frac\left\{1\right\}\left\{5\right\}right\right)right\right) - 1\right\} \left\{ 1 + tanleft\left(4 arctanleft\left(frac\left\{1\right\}\left\{5\right\}right\right)right\right)\right\}$

Similarly, two applications of the double angle identity yields

$tanleft\left(4 arctanleft\left(frac\left\{1\right\}\left\{5\right\}right\right)right\right) = frac\left\{120\right\}\left\{119\right\}$

and so

$q = frac\left\{frac\left\{120\right\}\left\{119\right\} - 1\right\}\left\{1 +frac\left\{120\right\}\left\{119\right\}\right\} = frac\left\{1\right\}\left\{239\right\}.$

Other formulas may be generated using complex numbers. For example the angle of a complex number a+bI is given by $arctanfrac\left\{b\right\}\left\{a\right\}$ and when you multiply complex numbers you add their angles. If a=b then $arctanfrac\left\{b\right\}\left\{a\right\}$ is 45 degrees or $frac\left\{pi\right\}\left\{4\right\}$. This means that if the real part and complex part are equal then the arctangent will equal $frac\left\{pi\right\}\left\{4\right\}$. Since the arctangent of one has a very slow convergence rate if we find two complex numbers that when multiplied will result in the same real and imaginary part we will have a Machin-like formula. An example is $\left(2 + i\right)$ and $\left(3 + i\right)$. If we multiply these out we will get $\left(5 + 5i\right)$. Therefore $arctanfrac\left\{1\right\}\left\{2\right\} + arctanfrac\left\{1\right\}\left\{3\right\} = frac\left\{pi\right\}\left\{4\right\}$.

If you want to use complex numbers to show that $frac\left\{pi\right\}\left\{4\right\} = 4arctanfrac\left\{1\right\}\left\{5\right\} - arctanfrac\left\{1\right\}\left\{239\right\}$ you first must know that when multiplying angles you put the complex number to the power of the number that you are multiplying by. So $\left(5 + i\right)$4$\left(-239+i\right) = \left(-114244 - 114244i\right)$ since the real part and imaginary part are equal $4arctanfrac\left\{1\right\}\left\{5\right\} - arctanfrac\left\{1\right\}\left\{239\right\} = frac\left\{pi\right\}\left\{4\right\}$

## Two-term formulas

There are exactly three additional Machin-like formulas with two terms; these are Euler's

$frac\left\{pi\right\}\left\{4\right\} = arctanfrac\left\{1\right\}\left\{2\right\} + arctanfrac\left\{1\right\}\left\{3\right\}$,

Hermann's,

$frac\left\{pi\right\}\left\{4\right\} = 2 arctanfrac\left\{1\right\}\left\{2\right\} - arctanfrac\left\{1\right\}\left\{7\right\}$,

and Hutton's

$frac\left\{pi\right\}\left\{4\right\} = 2 arctanfrac\left\{1\right\}\left\{3\right\} + arctanfrac\left\{1\right\}\left\{7\right\}$.

## More terms

The current record for digits of π, 1,241,100,000,000, by Yasumasa Kanada of Tokyo University, was obtained in 2002. A 64-node Hitachi supercomputer with 1 terabyte of main memory, performing 2 trillion operations per second, was used to evaluate the following Machin-like formulas:

$frac\left\{pi\right\}\left\{4\right\} = 12 arctanfrac\left\{1\right\}\left\{49\right\} + 32 arctanfrac\left\{1\right\}\left\{57\right\} - 5 arctanfrac\left\{1\right\}\left\{239\right\} + 12 arctanfrac\left\{1\right\}\left\{110443\right\}$
Kikuo Takano (1982).

$frac\left\{pi\right\}\left\{4\right\} = 44 arctanfrac\left\{1\right\}\left\{57\right\} + 7 arctanfrac\left\{1\right\}\left\{239\right\} - 12 arctanfrac\left\{1\right\}\left\{682\right\} + 24 arctanfrac\left\{1\right\}\left\{12943\right\}$
F. C. W. Störmer (1896).

The more efficient currently known Machin-like formulas for computing:


begin{align} frac{pi}{4} =& 183arctanfrac{1}{239} + 32arctanfrac{1}{1023} - 68arctanfrac{1}{5832} + 12arctanfrac{1}{110443} & - 12arctanfrac{1}{4841182} - 100arctanfrac{1}{6826318} end{align}


begin{align} frac{pi}{4} =& 183arctanfrac{1}{239} + 32arctanfrac{1}{1023} - 68arctanfrac{1}{5832} + 12arctanfrac{1}{113021} & - 100arctanfrac{1}{6826318} - 12arctanfrac{1}{33366019650} + 12arctanfrac{1}{43599522992503626068} end{align}

Search another word or see Machin-like formulason Dictionary | Thesaurus |Spanish