[gal-uh-ley-oh, -lee-oh; for 1 also It. gah-lee-le-aw]
Ferraris, Galileo, 1847-97, Italian physicist and electrical engineer. He is noted for his work on alternating current and for his discovery (1885) of the rotary magnetic field, through which he promoted the development of alternating-current motors.
Galileo (Galileo Galilei), 1564-1642, great Italian astronomer, mathematician, and physicist. By his persistent investigation of natural laws he laid foundations for modern experimental science, and by the construction of astronomical telescopes he greatly enlarged humanity's vision and conception of the universe. He gave a mathematical formulation to many physical laws.

Contributions to Physics

His early studies, at the Univ. of Pisa, were in medicine, but he was soon drawn to mathematics and physics. It is said that at the age of 19, in the cathedral of Pisa, he timed the oscillations of a swinging lamp by means of his pulse beats and found the time for each swing to be the same, no matter what the amplitude of the oscillation, thus discovering the isochronal nature of the pendulum, which he verified by experiment. Galileo soon became known through his invention of a hydrostatic balance and his treatise on the center of gravity of solid bodies. While professor (1589-92) at the Univ. of Pisa, he initiated his experiments concerning the laws of bodies in motion, which brought results so contradictory to the accepted teachings of Aristotle that strong antagonism was aroused. He found that bodies do not fall with velocities proportional to their weights, but he did not arrive at the correct conclusion (that the velocity is proportional to time and independent of both weight and density) until perhaps 20 years later. The famous story in which Galileo is said to have dropped weights from the Leaning Tower of Pisa is apocryphal. The actual experiment was performed by Simon Stevin several years before Galileo's work. However, Galileo did find that the path of a projectile is a parabola, and he is credited with conclusions foreshadowing Newton's laws of motion.

Contributions to Astronomy

In 1592 he began lecturing on mathematics at the Univ. of Padua, where he remained for 18 years. There, in 1609, having heard reports of a simple magnifying instrument put together by a lens-grinder in Holland, he constructed the first known complete astronomical telescope. Exploring the heavens with his new aid, Galileo discovered that the moon, shining with reflected light, had an uneven, mountainous surface and that the Milky Way was made up of numerous separate stars. In 1610 he discovered the four largest satellites of Jupiter, the first satellites of a planet other than Earth to be detected. He observed and studied the oval shape of Saturn (the limitations of his telescope prevented the resolving of Saturn's rings), the phases of Venus, and the spots on the sun. His investigations confirmed his acceptance of the Copernican theory of the solar system; but he did not openly declare a doctrine so opposed to accepted beliefs until 1613, when he issued a work on sunspots. Meanwhile, in 1610, he had gone to Florence as philosopher and mathematician to Cosimo II de' Medici, grand duke of Tuscany, and as mathematician at the Univ. of Pisa.

Conflict with the Church

In 1611 he visited Rome to display the telescope to the papal court. In 1616 the system of Copernicus was denounced as dangerous to faith, and Galileo, summoned to Rome, was warned not to uphold it or teach it. But in 1632 he published a work written for the nonspecialist, Dialogo … sopra i due massimi sistemi del mondo [dialogue on the two chief systems of the world] (tr. 1661; rev. and ed. by Giorgio de Santillana, 1953; new tr. by Stillman Drake, 1953, rev. 1967); that work, which supported the Copernican system as opposed to the Ptolemaic, marked a turning point in scientific and philosophical thought. Again summoned to Rome, he was tried (1633) by the Inquisition and brought to the point of making an abjuration of all beliefs and writings that held the sun to be the central body and the earth a moving body revolving with the other planets about it. Since 1761, accounts of the trial have concluded with the statement that Galileo, as he arose from his knees, exclaimed sotto voce, "E pur si muove" [nevertheless it does move]. That statement was long considered legendary, but it was discovered written on a portrait of Galileo completed c.1640.

After the Inquisition trial Galileo was sentenced to an enforced residence in Siena. He was later allowed to live in seclusion at Arcetri near Florence, and it is likely that Galileo's statement of defiance was made as he left Siena for Arcetri. In spite of infirmities and, at the last, blindness, Galileo continued the pursuit of scientific truth until his death. His last book, Dialogues Concerning Two New Sciences (tr., 3d ed. 1939, repr. 1952), which contains most of his contributions to physics, appeared in 1638. In 1979 Pope John Paul II asked that the 1633 conviction be annulled. However, since teaching the Copernican theory had been banned in 1616, it was technically possible that a new trial could find Galileo guilty; thus it was suggested that the 1616 prohibition be reversed, and this happened in 1992. The pope concluded that while 17th-century theologians based their decision on the knowledge available to them at the time, they had wronged Galileo by not recognizing the difference between a question relating to scientific investigation and one falling into the realm of doctrine of the faith.


See biography by L. Geymonat (tr. 1965); studies by G. de Santillana (1955), S. Drake (1970, 1978, and 1980), and W. R. Shea (1973); G. de Santillana, The Crime of Galileo (1955, repr. 1976); M. A. Finocchiaro, Galileo and the Art of Reasoning (1980).

Galileo's ship is a physics experiment proposed by Galileo, the famous 16th and 17th century physicist, astronomer, and philosopher. The experiment was created to disprove popular arguments against the idea of a rotating Earth.


Galileo's Dialogue Concerning the Two Chief World Systems considers all the common arguments against the idea that the Earth moves. One of these is that if the Earth is spinning on its axis, then we are all moving to the east at hundreds of miles an hour; hence, a ball dropped from a tower, moving straight down, will fall to the west of the tower, which has moved some distance east in the interim. Similarly, the argument goes, a cannon ball fired to the east will land closer to the cannon than one fired to the west, as the cannon will be moving east and partly catching up with it.

Galileo's fictional advocate Salviati responds with an illustration of the classical principle of relativity. According to this principle as formulated by later physicists, there is no internal observation (without, as it were, looking out the window) by which one can distinguish between a system that is moving in a straight line at constant speed and one that is at rest. Hence, any two systems moving without acceleration are equivalent, and unaccelerated motion is relative. The difficulties in reconciling this with the behavior of light led Einstein to formulate the special theory of relativity.

The proposal

Salviati's experiment goes as follows:

Shut yourself up with some friend in the main cabin below decks on some large ship, and have with you there some flies, butterflies, and other small flying animals. Have a large bowl of water with some fish in it; hang up a bottle that empties drop by drop into a wide vessel beneath it. With the ship standing still, observe carefully how the little animals fly with equal speed to all sides of the cabin. The fish swim indifferently in all directions; the drops fall into the vessel beneath; and, in throwing something to your friend, you need throw it no more strongly in one direction than another, the distances being equal; jumping with your feet together, you pass equal spaces in every direction. When you have observed all these things carefully (though doubtless when the ship is standing still everything must happen in this way), have the ship proceed with any speed you like, so long as the motion is uniform and not fluctuating this way and that. You will discover not the least change in all the effects named, nor could you tell from any of them whether the ship was moving or standing still. In jumping, you will pass on the floor the same spaces as before, nor will you make larger jumps toward the stern than toward the prow even though the ship is moving quite rapidly, despite the fact that during the time that you are in the air the floor under you will be going in a direction opposite to your jump. In throwing something to your companion, you will need no more force to get it to him whether he is in the direction of the bow or the stern, with yourself situated opposite. The droplets will fall as before into the vessel beneath without dropping toward the stern, although while the drops are in the air the ship runs many spans. The fish in their water will swim toward the front of their bowl with no more effort than toward the back, and will go with equal ease to bait placed anywhere around the edges of the bowl. Finally the butterflies and flies will continue their flights indifferently toward every side, nor will it ever happen that they are concentrated toward the stern, as if tired out from keeping up with the course of the ship, from which they will have been separated during long intervals by keeping themselves in the air. And if smoke is made by burning some incense, it will be seen going up in the form of a little cloud, remaining still and moving no more toward one side than the other. The cause of all these correspondences of effects is the fact that the ship's motion is common to all the things contained in it, and to the air also. That is why I said you should be below decks; for if this took place above in the open air, which would not follow the course of the ship, more or less noticeable differences would be seen in some of the effects noted.

Dialogue Concerning the Two Chief World Systems, translated by Stillman Drake, University of California Press, 1953, pp. 186 - 187 (Second Day).

The above text, describing the thought experiment on the moving ship, is released under the GNU Free Documentation License (GFDL) by the estate of Stillman Drake.

Search another word or see Galileoon Dictionary | Thesaurus |Spanish
Copyright © 2015, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature