Definitions

Costa's minimal surface

Costa's minimal surface

In topology, Costa's minimal surface is an embedded minimal surface and was discovered in 1982 by the Brazilian mathematician Celso Costa. It is also a surface of finite topology, which means that it can be formed by puncturing a compact surface. Topologically, it is a thrice-punctured torus.

Until its discovery, only the plane, helicoid and the catenoid were believed to be embedded minimal surfaces that could be formed by puncturing a compact surface. The Costa surface evolves from a torus, which is deformed until the planar end becomes catenoidal. Defining these surfaces on rectangular tori of arbitrary dimensions yields the Costa surface. Its discovery triggered research and discovery into several new surfaces and open conjectures in topology.

The Costa surface can be described using the Weierstrass zeta and the Weierstrass elliptic functions.

References

  • {{cite book

| author = Costa, Celso | title = Inmersos minimas completas em mathbb{R}^3 de gênero um e curvatura total finita | year = 1982 }} Ph.D. Thesis, IMPA, Rio de Janeiro, Brazil.

  • {{cite book

| author = Costa, Celso | title = Example of a complete minimal immersion in mathbb{R}^3 of genus one and three embedded ends | year = 1984 }} Bol. Soc. Bras. Mat. 15, 47–54.

See also

Search another word or see Costa's Minimal Surfaceon Dictionary | Thesaurus |Spanish
Copyright © 2014 Dictionary.com, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature
FAVORITES
RECENT

;