astronomy

astronomy

[uh-stron-uh-mee]
astronomy, branch of science that studies the motions and natures of celestial bodies, such as planets, stars, and galaxies; more generally, the study of matter and energy in the universe at large.

Ancient Astronomy

Astronomy is the oldest of the physical sciences. In many early civilizations the regularity of celestial motions was recognized, and attempts were made to keep records and predict future events. The first practical function of astronomy was to provide a basis for the calendar, the units of month and year being determined by astronomical observations. Later, astronomy served in navigation and timekeeping. The Chinese had a working calendar as early as the 13th cent. B.C. About 350 B.C., Shih Shen prepared the earliest known star catalog, containing 800 entries. Ancient Chinese astronomy is best known today for its observations of comets and supernovas. The Babylonians, Assyrians, and Egyptians were also active in astronomy. The earliest astronomers were priests, and no attempt was made to separate astronomy from astrology. In fact, an early motivation for the detailed study of planetary positions was the preparation of horoscopes.

Greek Innovations

The highest development of astronomy in the ancient world came with the Greeks in the period from 600 B.C. to A.D. 400. The methods employed by the Greek astronomers were quite distinct from those of earlier civilizations, such as the Babylonian. The Babylonian approach was numerological and best suited for studying the complex lunar motions that were of overwhelming interest to the Mesopotamian peoples. The Greek approach, on the contrary, was geometric and schematic, best suited for complete cosmological models. Thales, an Ionian philosopher of the 6th cent. B.C., is credited with introducing geometrical ideas into astronomy. Pythagoras, about a hundred years later, imagined the universe as a series of concentric spheres in which each of the seven "wanderers" (the sun, the moon, and the five known planets) were embedded. Euxodus developed the idea of rotating spheres by introducing extra spheres for each of the planets to account for the observed complexities of their motions. This was the beginning of the Greek aim of providing a theory that would account for all observed phenomena. Aristotle (384-322 B.C.) summarized much of the Greek work before him and remained an absolute authority until late in the Middle Ages. Although his belief that the earth does not move retarded astronomical progress, he gave the correct explanation of lunar eclipses and a sound argument for the spherical shape of the earth.

The Alexandrian School and the Ptolemaic System

The apex of Greek astronomy was reached in the Hellenistic period by the Alexandrian school. Aristarchus (c.310-c.230 B.C.) determined the sizes and distances of the moon and sun relative to the earth and advocated a heliocentric (sun-centered) cosmology. Although there were errors in his assumptions, his approach was truly scientific; his work was the first serious attempt to make a scale model of the universe. The first accurate measurement of the actual (as opposed to relative) size of the earth was made by Eratosthenes (284-192 B.C.). His method was based on the angular difference in the sun's position at the high noon of the summer solstice in two cities whose distance apart was known.

The greatest astronomer of antiquity was Hipparchus (190-120 B.C.). He developed trigonometry and used it to determine astronomical distances from the observed angular positions of celestial bodies. He recognized that astronomy requires accurate and systematic observations extended over long time periods. He therefore made great use of old observations, comparing them to his own. Many of his observations, particularly of the planets, were intended for future astronomers. He devised a geocentric system of cycles and epicycles (a compounding of circular motions) to account for the movements of the sun and moon.

Ptolemy (A.D. 85-165) applied the scheme of epicycles to the planets as well. The resulting Ptolemaic system was a geometrical representation of the solar system that predicted the motions of the planets with considerable accuracy. Among his other achievements was an accurate measurement of the distance to the moon by a parallax technique. His 13-volume treatise, the Almagest, summarized much of ancient astronomical knowledge and, in many translations, was the definitive authority for the next 14 centuries.

Development of Modern Astronomy

The Copernican Revolution

After the fall of Rome, European astronomy was largely dormant, but significant work was carried out by the Muslims and the Hindus. It was by way of Arabic translations that Greek astronomy reached medieval Europe. One of the great landmarks of the revival of learning in Europe was the publication (1543) by Nicolaus Copernicus (1473-1543) of his De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres). According to the Copernican system, the earth rotates on its axis and, with all the other planets, revolves around the sun. The assertion that the earth is not the center of the universe was to have profound philosophical and religious consequences. Copernicus's principal claim for his new system was that it made calculations easier. He retained the uniform circular motion of the Ptolemaic system, but by placing the sun at the center, he was able to reduce the number of epicycles. Copernicus also determined the sidereal periods (time for one revolution around the sun) of the planets and their distance from the sun relative to the sun-earth distance (see astronomical unit).

Brahe and Kepler

The great astronomer Tycho Brahe (1546-1601) was principally an observer; a conservative in matters of theory, he rejected the notion that the earth moves. Under the patronage of King Frederick II, Tycho established Uraniborg, a superb observatory on the Danish island of Hveen. Over a period of 20 years (1576-97), he and his assistants compiled the most accurate and complete astronomical observations to that time. At his death his records passed to Johannes Kepler (1571-1630), who had been his last assistant. Kepler spent nearly a decade trying to fit Tycho's observations, particularly of Mars, into an improved system of heliocentric circular motion. At last, he conceived the idea that the orbit of Mars was an ellipse with the sun at one focus. This led him to the three laws of planetary motion that bear his name (see Kepler's laws).

Galileo's Telescope

Galileo Galilei (1564-1642) made fundamental discoveries in both astronomy and physics; he is perhaps best described as the founder of modern science. Galileo was the first to make astronomical use of the telescope. His discoveries of the four largest moons of Jupiter and the phases of Venus were persuasive evidence for the Copernican cosmology. His discoveries of craters on the moon and blemishes on the sun (sunspots) discredited the ancient belief in the perfection of the heavens. These findings were announced in The Sidereal Messenger, a small book published in 1610. Galileo's Dialogue on the Two Chief Systems of the World (1632) was an eloquent argument for the Copernican system over the Ptolemaic. However, Galileo was called before the Inquisition and forced to renounce publicly all doctrines considered contrary to Scripture.

Astrophysical Discoveries

Isaac Newton (1642-1727), possibly the greatest scientific genius of all time, succeeded in uniting the sciences of astronomy and physics. His laws of motion and theory of universal gravitation provided a physical, dynamic basis for the merely descriptive laws of Kepler. Until well into the 19th cent., all progress in astronomy was essentially an extension of Newton's work. Edmond Halley's prediction that the comet of 1682 would return in 1758 was refined by A. C. Clairault, who included the perturbing effects of Jupiter and Saturn on the orbit to calculate the nearly exact date of the return of the comet. In 1781, William Herschel accidentally discovered a new planet, eventually named Uranus. Discrepancies between the observed and theoretical orbits of Uranus indicated the existence of a still more distant planet that was affecting Uranus's motion. J. C. Adams and U. J. J. Leverrier independently calculated the position where the new planet, Neptune, was actually discovered (1846). Similar calculations for a large "Planet X" led in 1930 to the discovery of Pluto, now classed as a dwarf planet.

By the early 19th cent., the science of celestial mechanics had reached a highly developed state at the hands of Leonhard Euler, J. L. Lagrange, P. S. Laplace, and others. Powerful new mathematical techniques allowed solution of most of the remaining problems in classical gravitational theory as applied to the solar system. In 1801, Giuseppe Piazzi discovered Ceres, the first of many asteroids. When Ceres was lost to view, C. F. Gauss applied the advanced gravitational techniques to compute the position where the asteroid was subsequently rediscovered. In 1838, F. W. Bessel made the first measurement of the distance to a star; using the method of parallax with the earth's orbit as a baseline, he determined the distance of the star 61 Cygni to be 60 trillion mi (about 10 light-years), a figure later shown to be 40% too large.

Modern Techniques, Discoveries, and Theories

Astronomy was revolutionized in the second half of the 19th cent. by the introduction of techniques based on photography and spectroscopy. Interest shifted from determining the positions and distances of stars to studying their physical composition (see stellar structure and stellar evolution). The dark lines in the solar spectrum that had been observed by W. H. Wollaston and Joseph von Fraunhofer were interpreted in an elementary fashion by G. R. Kirchhoff on the basis of classical physics, although a complete explanation came only with the quantum theory. Between 1911 and 1913, Ejnar Hertzsprung and H. N. Russell studied the relation between the colors and luminosities of typical stars (see Hertzsprung-Russell diagram). With the construction of ever more powerful telescopes (see observatory), the boundaries of the known universe constantly increased. E. P. Hubble's study of the distant galaxies led him to conclude that the universe is expanding (see Hubble's law). Using Cepheid variables as distance indicators, Harlow Shapley determined the size and shape of our galaxy, the Milky Way. During World War II Walter Baade defined two "populations" of stars, and suggested that an examination of these different types might trace the spiral shape of our own galaxy (see stellar populations). In 1951 a Yerkes Observatory group led by William W. Morgan detected evidence of two spiral arms in the Milky Way galaxy.

Various rival theories of the origin and overall structure of the universe, e.g., the big bang and steady state theories, have been formulated (see cosmology). Albert Einstein's theory of relativity plays a central role in all modern cosmological theories. In 1963, the moon passed in front of the radio source 3C-273, allowing Cyril Hazard to calculate the exact position of the source. With this information, Maarten Schmidt photographed the object's spectrum using the 200-in. (5-m) reflector on Palomar Mt., then the world's largest telescope. He interpreted the result as coming from an object, now known as a quasar, at an extreme distance and receding from us at a substantial fraction of the speed of light. In 1967 Antony Hewish and Jocelyn Bell Burnell discovered a radio source a few hundred light years away featuring regular pulses at intervals of about 1 second with an accuracy of repetition of one-millionth of a second. This was the first discovered pulsar, a rapidly spinning neutron star emitting lighthouse-type beams of energy, the end result of the death of a star in a supernova explosion.

The discovery by Karl Jansky in 1931 that radio signals were emitted by celestial bodies initiated the science of radio astronomy. Most recently, the frontiers of astronomy have been expanded by space exploration. Perturbations and interference from the earth's atmosphere make space-based observations necessary for infrared, ultraviolet, gamma-ray, and X-ray astronomy. The Surveyor and Apollo spacecraft of the late 1960s and early 1970s helped launch the new field of astrogeology. A series of interplanetary probes, such as Mariner 2 (1962) and 5 (1967) to Venus, Mariner 4 (1965) and 6 (1969) to Mars, and Voyager 1 (1979) and 2 (1979), provided a wealth of data about Jupiter, Saturn, Uranus, and Neptune; more recently, the Magellan probe to Venus (1990) and the Galileo probe to Jupiter (1995) have continued this line of research (see satellite, artificial; space probe). The Hubble Space Telescope, launched in 1990, has made possible visual observations of a quality far exceeding those of earthbound instruments.

Bibliography

See A. Berry, Short History of Astronomy (1961); J. L. Dreyer, History of Astronomy from Thales to Kepler (2d ed. 1953); A. Koyré, The Astronomical Revolution (1973); P. Maffei, Beyond the Moon (1978); P. Moore, ed. The International Encyclopedia of Astronomy (1987); S. Maran, ed., The Astronomy and Astrophysics Encyclopedia (1991); C. . Peterson and J. C. Brandt, Astronomy with the Hubble Space Telescope (1995).

Study of astronomical objects and phenomena by observing the ultraviolet radiation (UV radiation) they emit. It has yielded much information about chemical abundances and processes in interstellar matter, the Sun, and other stellar objects, such as hot young stars and white dwarf stars. Ultraviolet astronomy became feasible once rockets could carry instruments above Earth's atmosphere, which absorbs most electromagnetic radiation of UV wavelengths. Since the early 1960s, a number of unmanned space observatories carrying UV telescopes, including the Hubble Space Telescope, have collected UV data on objects such as comets, quasars, nebulae, and distant star clusters. The Extreme Ultraviolet Explorer, launched in 1992, was the first orbiting observatory to map the sky in the shortest UV wavelengths, at the boundary with the X-ray region of the electromagnetic spectrum.

Learn more about ultraviolet astronomy with a free trial on Britannica.com.

Study of celestial bodies by measuring the energy they emit or reflect at radio wavelengths. It began in 1931 with Karl Jansky's discovery of radio waves from an extraterrestrial source. After 1945, huge dish antennas, improved receivers and data-processing methods, and radio interferometers let astronomers study fainter sources and obtain greater detail. Radio waves penetrate much of the gas and dust in space, giving a much clearer picture of the centre and structure of the Milky Way Galaxy than optical observation can. This has allowed detailed studies of the interstellar medium in the Galaxy and the discovery of previously unknown cosmic objects (e.g., pulsars, quasars). In radar astronomy, radio signals are sent to near-Earth bodies or phenomena (e.g., meteor trails, the Moon, asteroids, nearby planets) and the reflections detected, providing precise measurement of the objects' distances and surface structure. Because radar waves can penetrate even dense clouds, they have provided astronomers' only maps of the surface of Venus. Radio and radar studies of the Moon revealed its sandlike surface before landings were made. Radio observations have also contributed greatly to knowledge about the Sun. Seealso radio telescope.

Learn more about radio and radar astronomy with a free trial on Britannica.com.

Study of astronomical objects by observing the infrared radiation they emit. Its techniques enable examination of many celestial objects that give off energy at wavelengths in the infrared region of the electromagnetic spectrum but that cannot otherwise be seen from Earth because they do not emit much visible light or because that light is blocked by dust clouds, which infrared radiation can penetrate. Infrared astronomy originated in the early 19th century with the work of William Herschel (see Herschel family), who discovered infrared radiation while studying sunlight. The first systematic infrared observations of other stars were made in the 1920s; modern techniques, such as the use of interference filters for ground-based telescopes, were introduced in the early 1960s. Because atmospheric water vapour absorbs many infrared wavelengths, observations are carried out with telescopes sited on high mountaintops and from airborne and space-based observatories. Infrared astronomy allows studies of the dust-obscured core of the Milky Way Galaxy and the hearts of star-forming regions and has led to many discoveries including brown dwarf candidates and disks of matter around certain stars.

Learn more about infrared astronomy with a free trial on Britannica.com.

Science dealing with the origin, evolution, composition, distance, and motion of all bodies and scattered matter in the universe. The most ancient of the sciences, it has existed since the dawn of recorded civilization. Much of the earliest knowledge of celestial bodies is often credited to the Babylonians. The ancient Greeks introduced influential cosmological ideas, including theories about the Earth in relation to the rest of the universe. Ptolemy's model of an Earth-centred universe (2nd century AD) influenced astronomical thought for over 1,300 years. In the 16th century, Nicolaus Copernicus assigned the central position to the Sun (see Copernican system), ushering in the age of modern astronomy. The 17th century saw several momentous developments: Johannes Kepler's discovery of the principles of planetary motion, Galileo's application of the telescope to astronomical observation, and Isaac Newton's formulation of the laws of motion and gravitation. In the 19th century, spectroscopy and photography made it possible to study the physical properties of planets, stars, and nebulae, leading to the development of astrophysics. In 1927 Edwin Hubble discovered that the universe, hitherto thought static, was expanding (see expanding universe). In 1937 the first radio telescope was built. The first artificial satellite, Sputnik, was launched in 1957, inaugurating the age of space exploration; spacecraft that could escape Earth's gravitational pull and return data about the solar system were launched beginning in 1959 (see Luna; Pioneer). Seealso big bang; cosmology; gamma-ray astronomy; infrared astronomy; radio and radar astronomy; ultraviolet astronomy; X-ray astronomy.

Learn more about astronomy with a free trial on Britannica.com.

Astronomy (from the Greek words astron (ἄστρον), "star", and nomos (νόμος), "law") is the scientific study of celestial objects (such as stars, planets, comets, and galaxies) and phenomena that originate outside the Earth's atmosphere (such as the cosmic background radiation). It is concerned with the evolution, physics, chemistry, meteorology, and motion of celestial objects, as well as the formation and development of the universe.

Astronomy is one of the oldest sciences. Astronomers of early civilizations performed methodical observations of the night sky, and astronomical artifacts have been found from much earlier periods. However, the invention of the telescope was required before astronomy was able to develop into a modern science. Historically, astronomy has included disciplines as diverse as astrometry, celestial navigation, observational astronomy, the making of calendars, and even astrology, but professional astronomy is nowadays often considered to be synonymous with astrophysics. Since the 20th century, the field of professional astronomy split into observational and theoretical branches. Observational astronomy is focused on acquiring and analyzing data, mainly using basic principles of physics. Theoretical astronomy is oriented towards the development of computer or analytical models to describe astronomical objects and phenomena. The two fields complement each other, with theoretical astronomy seeking to explain the observational results, and observations being used to confirm theoretical results.

Amateur astronomers have contributed to many important astronomical discoveries, and astronomy is one of the few sciences where amateurs can still play an active role, especially in the discovery and observation of transient phenomena.

Old or even ancient astronomy is not to be confused with astrology, the belief system which claims that human affairs are correlated with the positions of celestial objects. Although the two fields share a common origin and a part of their methods (namely, the use of ephemerides), they are distinct.

Lexicology

The word astronomy literally means "law of the stars" (or "culture of the stars" depending on the translation) and is derived from the Greek αστρονομία, astronomia, from the words άστρον (astron, "star") and νόμος (nomos, "laws or cultures").

Use of terms "astronomy" and "astrophysics"

Generally, either the term "astronomy" or "astrophysics" may be used to refer to this subject. Based on strict dictionary definitions, "astronomy" refers to "the study of objects and matter outside the earth's atmosphere and of their physical and chemical properties" and "astrophysics" refers to the branch of astronomy dealing with "the behavior, physical properties, and dynamic processes of celestial objects and phenomena". In some cases, as in the introduction of the introductory textbook The Physical Universe by Frank Shu, "astronomy" may be used to describe the qualitative study of the subject, whereas "astrophysics" is used to describe the physics-oriented version of the subject. However, since most modern astronomical research deals with subjects related to physics, modern astronomy could actually be called astrophysics. Various departments that research this subject may use "astronomy" and "astrophysics", partly depending on whether the department is historically affiliated with a physics department, and many professional astronomers actually have physics degrees. One of the leading scientific journals in the field is named Astronomy & Astrophysics.

History

In early times, astronomy only comprised the observation and predictions of the motions of objects visible to the naked eye. In some locations, such as Stonehenge, early cultures assembled massive artifacts that likely had some astronomical purpose. In addition to their ceremonial uses, these observatories could be employed to determine the seasons, an important factor in knowing when to plant crops, as well as in understanding the length of the year.

Before tools such as the telescope were invented early study of the stars had to be conducted from the only vantage points available, namely tall buildings and high ground using the bare eye.

As civilizations developed, most notably in Mesopotamia, Greece, Egypt, Persia, Maya, India, China, and the Islamic world, astronomical observatories were assembled, and ideas on the nature of the universe began to be explored. Most of early astronomy actually consisted of mapping the positions of the stars and planets, a science now referred to as astrometry. From these observations, early ideas about the motions of the planets were formed, and the nature of the Sun, Moon and the Earth in the universe were explored philosophically. The Earth was believed to be the center of the universe with the Sun, the Moon and the stars rotating around it. This is known as the geocentric model of the universe.

A few notable astronomical discoveries were made prior to the application of the telescope. For example, the obliquity of the ecliptic was estimated as early as 1000 BC by the Chinese. The Chaldeans discovered that lunar eclipses recurred in a repeating cycle known as a saros. In the 2nd century BC, the size and distance of the Moon were estimated by Hipparchus.

During the Middle Ages, observational astronomy was mostly stagnant in medieval Europe, at least until the 13th century. However, observational astronomy flourished in the Islamic world and other parts of the world. Some of the prominent Arab astronomers, who made significant contributions to the science were Al-Battani and Thebit. Astronomers during that time introduced many Arabic names that are now used for individual stars.

Scientific revolution

During the Renaissance, Nicolaus Copernicus proposed a heliocentric model of the solar system. His work was defended, expanded upon, and corrected by Galileo Galilei and Johannes Kepler. Galileo innovated by using telescopes to enhance his observations.

Kepler was the first to devise a system that described correctly the details of the motion of the planets with the Sun at the center. However, Kepler did not succeed in formulating a theory behind the laws he wrote down. It was left to Newton's invention of celestial dynamics and his law of gravitation to finally explain the motions of the planets. Newton also developed the reflecting telescope.

Further discoveries paralleled the improvements in the size and quality of the telescope. More extensive star catalogues were produced by Lacaille. The astronomer William Herschel made a detailed catalog of nebulosity and clusters, and in 1781 discovered the planet Uranus, the first new planet found. The distance to a star was first announced in 1838 when the parallax of 61 Cygni was measured by Friedrich Bessel.

During the nineteenth century, attention to the three body problem by Euler, Clairaut, and D'Alembert led to more accurate predictions about the motions of the Moon and planets. This work was further refined by Lagrange and Laplace, allowing the masses of the planets and moons to be estimated from their perturbations.

Significant advances in astronomy came about with the introduction of new technology, including the spectroscope and photography. Fraunhofer discovered about 600 bands in the spectrum of the Sun in 1814-15, which, in 1859, Kirchhoff ascribed to the presence of different elements. Stars were proven to be similar to the Earth's own Sun, but with a wide range of temperatures, masses, and sizes.

The existence of the Earth's galaxy, the Milky Way, as a separate group of stars, was only proved in the 20th century, along with the existence of "external" galaxies, and soon after, the expansion of the universe, seen in the recession of most galaxies from us. Modern astronomy has also discovered many exotic objects such as quasars, pulsars, blazars, and radio galaxies, and has used these observations to develop physical theories which describe some of these objects in terms of equally exotic objects such as black holes and neutron stars. Physical cosmology made huge advances during the 20th century, with the model of the Big Bang heavily supported by the evidence provided by astronomy and physics, such as the cosmic microwave background radiation, Hubble's law, and cosmological abundances of elements.

Observational astronomy

In astronomy, information is mainly received from the detection and analysis of visible light or other regions of the electromagnetic radiation. Observational astronomy may be divided according to the observed region of the electromagnetic spectrum. Some parts of the spectrum can be observed from the Earth's surface, while other parts are only observable from either high altitudes or space. Specific information on these subfields is given below.

Radio astronomy

Radio astronomy studies radiation with wavelengths greater than approximately one millimeter. Radio astronomy is different from most other forms of observational astronomy in that the observed radio waves can be treated as waves rather than as discrete photons. Hence, it is relatively easier to measure both the amplitude and phase of radio waves, whereas this is not as easily done at shorter wavelengths.

Though some radio waves are produced by astronomical objects in the form of thermal emission, most of the radio emission that is observed from Earth is seen in the form of synchrotron radiation, which is produced when electrons oscillate around magnetic fields. Additionally, a number of spectral lines produced by interstellar gas, notably the hydrogen spectral line at 21 cm, are observable at radio wavelengths.

A wide variety of objects are observable at radio wavelengths, including supernovae, interstellar gas, pulsars, and active galactic nuclei.

Infrared astronomy

Infrared astronomy deals with the detection and analysis of infrared radiation (wavelengths longer than red light). Except at wavelengths close to visible light, infrared radiation is heavily absorbed by the atmosphere, and the atmosphere produces significant infrared emission. Consequently, infrared observatories have to be located in high, dry places or in space. The infrared spectrum is useful for studying objects that are too cold to radiate visible light, such as planets and circumstellar disks. Longer infrared wavelengths can also penetrate clouds of dust that blocks visible light, allowing observation of young stars in molecular clouds and the cores of galaxies. Some molecules radiate strongly in the infrared, and this can be used to study chemistry in space, as well as detecting water in comets.

Optical astronomy

Historically, optical astronomy, also called visible light astronomy, is the oldest form of astronomy. Optical images were originally drawn by hand. In the late nineteenth century and most of the twentieth century, images were made using photographic equipment. Modern images are made using digital detectors, particularly detectors using charge-coupled devices (CCDs). Although visible light itself extends from approximately 4000 Å to 7000 Å (400 nm to 700 nm), the same equipment used at these wavelengths is also used to observe some near-ultraviolet and near-infrared radiation.

Ultraviolet astronomy

Ultraviolet astronomy is generally used to refer to observations at ultraviolet wavelengths between approximately 100 and 3200 Å (10 to 320 nm). Light at these wavelengths is absorbed by the Earth's atmosphere, so observations at these wavelengths must be performed from the upper atmosphere or from space. Ultraviolet astronomy is best suited to the study of thermal radiation and spectral emission lines from hot blue stars (OB stars) that are very bright in this wave band. This includes the blue stars in other galaxies, which have been the targets of several ultraviolet surveys. Other objects commonly observed in ultraviolet light include planetary nebulae, supernova remnants, and active galactic nuclei. However, ultraviolet light is easily absorbed by interstellar dust, and measurement of the ultraviolet light from objects need to be corrected for extinction.

X-ray astronomy

X-ray astronomy is the study of astronomical objects at X-ray wavelengths. Typically, objects emit X-ray radiation as synchrotron emission (produced by electrons oscillating around magnetic field lines), thermal emission from thin gases (called bremsstrahlung radiation) that is above 107 (10 million) kelvins, and thermal emission from thick gases (called blackbody radiation) that are above 107 Kelvin. Since X-rays are absorbed by the Earth's atmosphere, all X-ray observations must be done from high-altitude balloons, rockets, or spacecraft. Notable X-ray sources include X-ray binaries, pulsars, supernova remnants, elliptical galaxies, clusters of galaxies, and active galactic nuclei.

Gamma-ray astronomy

Gamma ray astronomy is the study of astronomical objects at the shortest wavelengths of the electromagnetic spectrum. Gamma rays may be observed directly by satellites such as the Compton Gamma Ray Observatory or by specialized telescopes called atmospheric Cherenkov telescopes. The Cherenkov telescopes do not actually detect the gamma rays directly but instead detect the flashes of visible light produced when gamma rays are absorbed by the Earth's atmosphere.

Most gamma-ray emitting sources are actually gamma-ray bursts, objects which only produce gamma radiation for a few milliseconds to thousands of seconds before fading away. Only 10% of gamma-ray sources are non-transient sources. These steady gamma-ray emitters include pulsars, neutron stars, and black hole candidates such as active galactic nuclei.

Fields of observational astronomy not based on the electromagnetic spectrum

Other than electromagnetic radiation, few things may be observed from the Earth that originate from great distances.

In neutrino astronomy, astronomers use special underground facilities such as SAGE, GALLEX, and Kamioka II/III for detecting neutrinos. These neutrinos originate primarily from the Sun but also from supernovae.

Cosmic rays consisting of very high energy particles can be observed hitting the Earth's atmosphere. Additionally, some future neutrino detectors will also be sensitive to the neutrinos produced when cosmic rays hit the Earth's atmosphere.

A few gravitational wave observatories have been constructed, such as the Laser Interferometer Gravitational Observatory (LIGO) but gravitational waves are extremely difficult to detect.

Planetary astronomy has benefited from direct observation in the form of spacecraft and sample return missions. These include fly-by missions with remote sensors; landing vehicles that can perform experiments on the surface materials; impactors that allow remote sensing of buried material, and sample return missions that allow direct, laboratory examination.

Astrometry and celestial mechanics

One of the oldest fields in astronomy, and in all of science, is the measurement of the positions of celestial objects. Historically, accurate knowledge of the positions of the Sun, Moon, planets and stars has been essential in celestial navigation.

Careful measurement of the positions of the planets has led to a solid understanding of gravitational perturbations, and an ability to determine past and future positions of the planets with great accuracy, a field known as celestial mechanics. More recently the tracking of near-Earth objects will allow for predictions of close encounters, and potential collisions, with the Earth.

The measurement of stellar parallax of nearby stars provides a fundamental baseline in the cosmic distance ladder that is used to measure the scale of the universe. Parallax measurements of nearby stars provide an absolute baseline for the properties of more distant stars, because their properties can be compared. Measurements of radial velocity and proper motion show the kinematics of these systems through the Milky Way galaxy. Astrometric results are also used to measure the distribution of dark matter in the galaxy.

During the 1990s, the astrometric technique of measuring the stellar wobble was used to detect large extrasolar planets orbiting nearby stars.

Theoretical astronomy

Theoretical astronomers use a wide variety of tools which include analytical models (for example, polytropes to approximate the behaviors of a star) and computational numerical simulations. Each has some advantages. Analytical models of a process are generally better for giving insight into the heart of what is going on. Numerical models can reveal the existence of phenomena and effects that would otherwise not be seen.

Theorists in astronomy endeavor to create theoretical models and figure out the observational consequences of those models. This helps observers look for data that can refute a model or help in choosing between several alternate or conflicting models.

Theorists also try to generate or modify models to take into account new data. In the case of an inconsistency, the general tendency is to try to make minimal modifications to the model to fit the data. In some cases, a large amount of inconsistent data over time may lead to total abandonment of a model.

Topics studied by theoretical astronomers include: stellar dynamics and evolution; galaxy formation; large-scale structure of matter in the Universe; origin of cosmic rays; general relativity and physical cosmology, including string cosmology and astroparticle physics. Astrophysical relativity serves as a tool to gauge the properties of large scale structures for which gravitation plays a significant role in physical phenomena investigated and as the basis for black hole (astro)physics and the study of gravitational waves.

Some widely accepted and studied theories and models in astronomy, now included in the Lambda-CDM model are the Big Bang, Cosmic inflation, dark matter, and fundamental theories of physics.

A few examples of this process:

Physical process

Experimental tool

Theoretical model

Explains/predicts
Gravitation

Radio telescopes

Self-gravitating system

Emergence of a star system
Nuclear fusion

Spectroscopy

Stellar evolution

How the stars shine and how metals formed
The Big Bang

Hubble Space Telescope, COBE

Expanding universe

Age of the Universe
Quantum fluctuations

Cosmic inflation

Flatness problem
Gravitational collapse

X-ray astronomy

General relativity

Black holes at the center of Andromeda galaxy
CNO cycle in stars

Dark matter and dark energy are the current leading topics in astronomy, as their discovery and controversy originated during the study of the galaxies.

Subfield of astronomy for specific astronomical objects

Solar astronomy

At a distance of about eight light-minutes, the most frequently studied star is the Sun, a typical main-sequence dwarf star of stellar class G2 V, and about 4.6 Gyr in age. The Sun is not considered a variable star, but it does undergo periodic changes in activity known as the sunspot cycle. This is an 11-year fluctuation in sunspot numbers. Sunspots are regions of lower-than- average temperatures that are associated with intense magnetic activity.

The Sun has steadily increased in luminosity over the course of its life, increasing by 40% since it first became a main-sequence star. The Sun has also undergone periodic changes in luminosity that can have a significant impact on the Earth. The Maunder minimum, for example, is believed to have caused the Little Ice Age phenomenon during the Middle Ages.

The visible outer surface of the Sun is called the photosphere. Above this layer is a thin region known as the chromosphere. This is surrounded by a transition region of rapidly increasing temperatures, then by the super-heated corona.

At the center of the Sun is the core region, a volume of sufficient temperature and pressure for nuclear fusion to occur. Above the core is the radiation zone, where the plasma conveys the energy flux by means of radiation. The outer layers form a convection zone where the gas material transports energy primarily through physical displacement of the gas. It is believed that this convection zone creates the magnetic activity that generates sun spots.

A solar wind of plasma particles constantly streams outward from the Sun until it reaches the heliopause. This solar wind interacts with the magnetosphere of the Earth to create the Van Allen radiation belts, as well as the aurora where the lines of the Earth's magnetic field descend into the atmosphere.

Planetary science

This astronomical field examines the assemblage of planets, moons, dwarf planets, comets, asteroids, and other bodies orbiting the Sun, as well as extrasolar planets. The solar system has been relatively well-studied, initially through telescopes and then later by spacecraft. This has provided a good overall understanding of the formation and evolution of this planetary system, although many new discoveries are still being made.

The solar system is subdivided into the inner planets, the asteroid belt, and the outer planets. The inner terrestrial planets consist of Mercury, Venus, Earth, and Mars. The outer gas giant planets are Jupiter, Saturn, Uranus, Neptune, and the small terrestrial planet Pluto. Beyond Neptune lie the Kuiper Belt, and finally the Oort Cloud, which may extend as far as a light-year.

The planets were formed by a protoplanetary disk that surrounded the early Sun. Through a process that included gravitational attraction, collision, and accretion, the disk formed clumps of matter that, with time, became protoplanets. The radiation pressure of the solar wind then expelled most of the unaccreted matter, and only those planets with sufficient mass retained their gaseous atmosphere. The planets continued to sweep up, or eject, the remaining matter during a period of intense bombardment, evidenced by the many impact craters on the Moon. During this period, some of the protoplanets may have collided, the leading hypothesis for how the Moon was formed.

Once a planet reaches sufficient mass, the materials with different densities segregate within, during planetary differentiation. This process can form a stony or metallic core, surrounded by a mantle and an outer surface. The core may include solid and liquid regions, and some planetary cores generate their own magnetic field, which can protect their atmospheres from solar wind stripping.

A planet or moon's interior heat is produced from the collisions that created the body, radioactive materials (e.g. uranium, thorium, and 26Al), or tidal heating. Some planets and moons accumulate enough heat to drive geologic processes such as volcanism and tectonics. Those that accumulate or retain an atmosphere can also undergo surface erosion from wind or water. Smaller bodies, without tidal heating, cool more quickly; and their geological activity ceases with the exception of impact cratering.

Stellar astronomy

The study of stars and stellar evolution is fundamental to our understanding of the universe. The astrophysics of stars has been determined through observation and theoretical understanding; and from computer simulations of the interior.

Star formation occurs in dense regions of dust and gas, known as giant molecular clouds. When destabilized, cloud fragments can collapse under the influence of gravity, to form a protostar. A sufficiently dense, and hot, core region will trigger nuclear fusion, thus creating a main-sequence star.

Almost all elements heavier than hydrogen and helium were created inside the cores of stars.

The characteristics of the resulting star depend primarily upon its starting mass. The more massive the star, the greater its luminosity, and the more rapidly it expends the hydrogen fuel in its core. Over time, this hydrogen fuel is completely converted into helium, and the star begins to evolve. The fusion of helium requires a higher core temperature, so that the star both expands in size, and increases in core density. The resulting red giant enjoys a brief life span, before the helium fuel is in turn consumed. Very massive stars can also undergo a series of decreasing evolutionary phases, as they fuse increasingly heavier elements.

The final fate of the star depends on its mass, with stars of mass greater than about eight times the Sun becoming core collapse supernovae; while smaller stars form planetary nebulae, and evolve into white dwarfs. The remnant of a supernova is a dense neutron star, or, if the stellar mass was at least three times that of the Sun, a black hole. Close binary stars can follow more complex evolutionary paths, such as mass transfer onto a white dwarf companion that can potentially cause a supernova. Planetary nebulae and supernovae are necessary for the distribution of metals to the interstellar medium; without them, all new stars (and their planetary systems) would be formed from hydrogen and helium alone.

Galactic astronomy

Our solar system orbits within the Milky Way, a barred spiral galaxy that is a prominent member of the Local Group of galaxies. It is a rotating mass of gas, dust, stars and other objects, held together by mutual gravitational attraction. As the Earth is located within the dusty outer arms, there are large portions of the Milky Way that are obscured from view.

In the center of the Milky Way is the core, a bar-shaped bulge with what is believed to be a supermassive black hole at the center. This is surrounded by four primary arms that spiral from the core. This is a region of active star formation that contains many younger, population II stars. The disk is surrounded by a spheroid halo of older, population I stars, as well as relatively dense concentrations of stars known as globular clusters.

Between the stars lies the interstellar medium, a region of sparse matter. In the densest regions, molecular clouds of molecular hydrogen and other elements create star-forming regions. These begin as irregular dark nebulae, which concentrate and collapse (in volumes determined by the Jeans length) to form compact protostars.

As the more massive stars appear, they transform the cloud into an H II region of glowing gas and plasma. The stellar wind and supernova explosions from these stars eventually serve to disperse the cloud, often leaving behind one or more young open clusters of stars. These clusters gradually disperse, and the stars join the population of the Milky Way.

Kinematic studies of matter in the Milky Way and other galaxies have demonstrated that there is more mass than can be accounted for by visible matter. A dark matter halo appears to dominate the mass, although the nature of this dark matter remains undetermined.

Extragalactic astronomy

The study of objects outside of our galaxy is a branch of astronomy concerned with the formation and evolution of Galaxies; their morphology and classification; and the examination of active galaxies, and the groups and clusters of galaxies. The latter is important for the understanding of the large-scale structure of the cosmos.

Most galaxies are organized into distinct shapes that allow for classification schemes. They are commonly divided into spiral, elliptical and Irregular galaxies.

As the name suggests, an elliptical galaxy has the cross-sectional shape of an ellipse. The stars move along random orbits with no preferred direction. These galaxies contain little or no interstellar dust; few star-forming regions; and generally older stars. Elliptical galaxies are more commonly found at the core of galactic clusters, and may be formed through mergers of large galaxies.

A spiral galaxy is organized into a flat, rotating disk, usually with a prominent bulge or bar at the center, and trailing bright arms that spiral outward. The arms are dusty regions of star formation where massive young stars produce a blue tint. Spiral galaxies are typically surrounded by a halo of older stars. Both the Milky Way and the Andromeda Galaxy are spiral galaxies.

Irregular galaxies are chaotic in appearance, and are neither spiral nor elliptical. About a quarter of all galaxies are irregular, and the peculiar shapes of such galaxies may be the result of gravitational interaction.

An active galaxy is a formation that is emitting a significant amount of its energy from a source other than stars, dust and gas; and is powered by a compact region at the core, usually thought to be a super-massive black hole that is emitting radiation from in-falling material.

A radio galaxy is an active galaxy that is very luminous in the radio portion of the spectrum, and is emitting immense plumes or lobes of gas. Active galaxies that emit high-energy radiation include Seyfert galaxies, Quasars, and Blazars. Quasars are believed to be the most consistently luminous objects in the known universe.

The large-scale structure of the cosmos is represented by groups and clusters of galaxies. This structure is organized in a hierarchy of groupings, with the largest being the superclusters. The collective matter is formed into filaments and walls, leaving large voids in between.

Cosmology

Cosmology (from the Greek κοσμος "world, universe" and λογος "word, study") could be considered the study of the universe as a whole.

Observations of the large-scale structure of the universe, a branch known as physical cosmology, have provided a deep understanding of the formation and evolution of the cosmos. Fundamental to modern cosmology is the well-accepted theory of the big bang, wherein our universe began at a single point in time, and thereafter expanded over the course of 13.7 Gyr to its present condition. The concept of the big bang can be traced back to the discovery of the microwave background radiation in 1965.

In the course of this expansion, the universe underwent several evolutionary stages. In the very early moments, it is theorized that the universe experienced a very rapid cosmic inflation, which homogenized the starting conditions. Thereafter, nucleosynthesis produced the elemental abundance of the early universe. (See also nucleocosmochronology.)

When the first atoms formed, space became transparent to radiation, releasing the energy viewed today as the microwave background radiation. The expanding universe then underwent a Dark Age due to the lack of stellar energy sources.

A hierarchical structure of matter began to form from minute variations in the mass density. Matter accumulated in the densest regions, forming clouds of gas and the earliest stars. These massive stars triggered the reionization process and are believed to have created many of the heavy elements in the early universe.

Gravitational aggregations clustered into filaments, leaving voids in the gaps. Gradually, organizations of gas and dust merged to form the first primitive galaxies. Over time, these pulled in more matter, and were often organized into groups and clusters of galaxies, then into larger-scale superclusters.

Fundamental to the structure of the universe is the existence of dark matter and dark energy. These are now thought to be the dominant components, forming 96% of the density of the universe. For this reason, much effort is expended in trying to understand the physics of these components.

Interdisciplinary studies

Astronomy and astrophysics have developed significant interdisciplinary links with other major scientific fields. Archaeoastronomy is the study of ancient or traditional astronomies in their cultural context, utilizing archaeological and anthropological evidence. Astrobiology is the study of the advent and evolution of biological systems in the universe, with particular emphasis on the possibility of non-terrestrial life.

The study of chemicals found in space, including their formation, interaction and destruction, is called Astrochemistry. These substances are usually found in molecular clouds, although they may also appear in low temperature stars, brown dwarfs and planets. Cosmochemistry is the study of the chemicals found within the Solar System, including the origins of the elements and variations in the isotope ratios. Both of these fields represent an overlap of the disciplines of astronomy and chemistry.

Amateur astronomy

Collectively, amateur astronomers observe a variety of celestial objects and phenomena sometimes with equipment that they build themselves. Common targets of amateur astronomers include the Moon, planets, stars, comets, meteor showers, and a variety of deep-sky objects such as star clusters, galaxies, and nebulae. One branch of amateur astronomy, amateur astrophotography, involves the taking of photos of the night sky. Many amateurs like to specialize in the observation of particular objects, types of objects, or types of events which interest them.

Most amateurs work at visible wavelengths, but a small minority experiment with wavelengths outside the visible spectrum. This includes the use of infrared filters on conventional telescopes, and also the use of radio telescopes. The pioneer of amateur radio astronomy was Karl Jansky who started observing the sky at radio wavelengths in the 1930s. A number of amateur astronomers use either homemade telescopes or use radio telescopes which were originally built for astronomy research but which are now available to amateurs (e.g. the One-Mile Telescope).

Amateur astronomers continue to make scientific contributions to the field of astronomy. Indeed, it is one of the few scientific disciplines where amateurs can still make significant contributions. Amateurs can make occultation measurements that are used to refine the orbits of minor planets. They can also discover comets, and perform regular observations of variable stars. Improvements in digital technology have allowed amateurs to make impressive advances in the field of astrophotography.

Major questions in astronomy

Although the scientific discipline of astronomy has made tremendous strides in understanding the nature of the universe and its contents, there remain some important unanswered questions. Answers to these may require the construction of new ground- and space-based instruments, and possibly new developments in theoretical and experimental physics.

  • What is the origin of the stellar mass spectrum? That is, why do astronomers observe the same distribution of stellar masses—the initial mass function—apparently regardless of the initial conditions? A deeper understanding of the formation of stars and planets is needed.
  • Is there other life in the Universe? Especially, is there other intelligent life? If so, what is the explanation for the Fermi paradox? The existence of life elsewhere has important scientific and philosophical implications.
  • What is the nature of dark matter and dark energy? These dominate the evolution and fate of the cosmos, yet we are still uncertain about their true natures.
  • Why did the universe come to be? Why, for example, are the physical constants so finely tuned that they permit the existence of life? Could they be the result of cosmological natural selection? What caused the cosmic inflation that produced our homogeneous universe?
  • What will be the ultimate fate of the universe?

See also

References

External links

Search another word or see Astronomyon Dictionary | Thesaurus |Spanish
Copyright © 2014 Dictionary.com, LLC. All rights reserved.
  • Please Login or Sign Up to use the Recent Searches feature
FAVORITES
RECENT

;